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SECtION !

II" INTRODUCTION

Neural network models are highly parallel alternatives to conventional methods of
i computation for solving such ill-structured problems as pattern recognition or robotic control.

Their architecture resembles that of biological nervous systems, which solve such problems so
efficiently. Sophisticated neural network models and training procedures have evolved, since theU pioneering work of the 1940s. Even so, neural network models have not yet convincingly
demonstrated their superiority over the algorithm-oriented approaches of artificial intelligence or

3 classical statistical techniques. Widespread application of neural network technology depends on
advances in both theoretical understanding and the development of computing platforms explicitly
designed for the parallel implementation of such models. Those areas of research naturally interact
and complement each other. For example, scaleup and convergence issues can be studied both
theoretically and by actual operation of neural networks.

In the 1988-1989 contract period, we addressed the need for hardware realizations of neural

networks by implementing a hybrid optoelectronic architecture. The massive parallelism of neural
network models that makes them run very inefficiently on serial machines also allows them to be
implemented very efficiently on parallel optical machines. The potential speedup factors are high.5 Our approach is a direct analog realization of neural network models in which a physical node
is dedicated to representing each "neuron," or processing element. By not having to multiplex

* •neurons among physical nodes and by simultaneously updating all weights between two layers,
II using optics, we achieve very large throughputs with large numbers of relatively slow processors,

as in biological nervous systems. The stimulated photorefractive optical neural network
(SPONN), developed under this contract in 1988-1989, is a fine-grained optoelectronic
architecture characterized by massive parallelism and much greater connectivity than is possible in

* electronic approaches.
SPONN is capable of implementing neural network models comprising 105 neurons with

I 1010 interconnections. SPONN's optical architecture is inherently suited to the mapping of
multilayer neural network models; moreover, it is easily programmable. Its weight updating rate is
independent of the number of neurons. In contrast, most electronic approaches must deal with data
routing and contention problems arising from the limited connectivity of electronic structures, and
therefore depend strongly on the number of neurons and their interconnections.3 In SPONN, neurons are implemented as pixels on a two-dimensional spatial light modulator
(SLM) and interconnection weight. are established holographically as gratings in photorefractive3 crystals. A unique feature is our use of a continuum of spatially and angularly distributed gratings

*
I
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to represent each weight, rather than the single grating employed by prior holographic optical I
neural networks. Multiple gratings eliminate the 2mbiguous readout of gratings and the crosstalk

that results from the angular degeneracy of the Bragg condition for diffraction from a volume
grating. Our new technique eliminates the need for subsampling the input/output planes and

therefore permits full utilization of the SLM space-bandwidth product for representing neurons, 3
unlike other holographic approaches. We can implement multilayer neural network models using a
single photorefractive crystal and SLM, which produces a compact modular system.

The continuum of gratings is generated by focusing the input plane into a self-pumped or

mutually-pumped phase-conjugate mirror (PCM). Stimulated photorefractive processes in the
PCM cause each pixel in the input plane to form connections with all other pixels via distributed I
volume gratings. Moreover, the gratings arrange themselves to redistribute the incident light into a

phase-conjugate output wavefront that is a time-reversed version of the input light. Such self-

organization yields a fully parallel and massively interconnected physical system that is an ideal
implementation medium for neural network models. The distributed gratings in the PCM both

store the weights and route the optical beams.
An important feature of SPONN is its hybridization of optics and electronics. It combi s

the large storage capacity, parallelism, and connectivity of optical structures with the easy
programmability and controllable nonlinearity of electronic structures. A video frame grabber in

conjunction with the host computer carries out the nonlinear neuron activation functions with
minimal computational overhead. We can implement multilayer neural networks by spatially

segregating the input and output planes. Unlike all-optical neural networks, SPONN can be easily _
and reproducibly controlled.

2I
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* .SECTION 2

VOLUME HOLOGRAM IMPLEMENTATIONS OF NEURAL NETWORKSU
Volume holograms offer two features required by neural networks: enormous storage

capacity and fully parallel processing of the stored interconnection weight values. In such an

optical neural network, neurons are represented by pixels on two-dimensional SLMs. Pixel

brightness corresponds to the activation level of the neuron. When the SLM is placed in the back

focal plane of a lens and coherent readout is used, the light emitted by the pixels is converted to

coherent beams that illuminate a real-time holographic medium.

1 In this report, we represent each light beam by a momentum or k vector. (The direction of

the k vector corresponds to the direction of propagation; its magnitude is the inverse of the optical

3 wavelength in the holographic medium.) Interconnection weights between neurons are established

when a pair of light beams interfere in the holographic medium, producing a volume sinusoidal

light-intensity pattern that in'eracts with the medium. The photorefractive effect is a suitable

physical mechanism for converting the light-intensity pattern into a semipermanent deformation of

the optical properties of the material, thus recording the weight values.

In the photorefractive effect, incident light excites carriers (electrons, holes) from traps into

the conduction or valence band. The carriers are then transported by diffusion and drift until they

3 fall into empty traps, thereby creating an internal space-charge field that in turn modulates the

birefingence of the material through the electro-optic effect. 1 Because of the long dark-decay times

3of some photorefractive materials, the resultant phase gratings can be stored with a time constant of

many hours.2 (Storage for longer periods is also possible using various hologram-fixing methods,

* discussed below in subsection 3.7.)

* When one of the original two beams subsequently addresses the grating, the other beam is

reconstructed with a diffraction efficiency that represents the interconnection weight value between

the two neurons. In general, reading out the grating partially erases it unless the readout beam is

much weaker than the original writing light or the crystal is fixed by means of special techniques.

3 Such light sensitivity allows us to implement learning in our photorefractive optical neural

network, since we can selectively decrease as well as increase the weights. Photorefractive

3 materials and their application in optical data processing is an active area of research at HRL.

The physical mechanism that allows large numbers of gratings to be stored in a

photorefractive crystal is described by the Bragg condition for constructive scattering off a volume

grating: a beam will be reconstructed only if its angle of incidence is approximately equal to that of

* 3
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the original writing beam. The angtlar selectivity for reconstruction can be derived from coupled I
mode theory. 3 It is given by I

nTzsin(o)

where X is the optical wavelength, n is the index of refraction of the photorefractive crystal, Tz is I
the hologram thickness, and 0 is the mean angle between the reference and object beamlets. The

angular selectivity is greater for thicker crystals. Phase matching arguments permit the Bragg
condition to be described geometrically as a vector sum: KJ + Kg = Ki, where KJ and Ki are the
wave vectors of the incident and diffracted beams, respectively, and Kg is the grating wave vector.
Figure 1 illustrates a holographic interconnection between two optical neurons, with Figure 1 (a)
showing how holographic gratings form an outer-product or Hebbian interconnection matrix and
Figure 1(b) describing the Bragg condition geometrically.

A geometric construction for the theoretical maximum storage capacity of a volume hologram

can be drawn in k space, as shown in Figure 2. If the first writing beam varies over solid angle I
00 whereas the second writing beam varies over angle Or, then the vector difference between the

two beams (the grating wave vector Kg) will trace out a three-dimensional region in k space. The
volume of the region depends on such geometric factors as the focal lengths of the optics and the

spacing of the neurons on the SLMs.
The grating wave vector Kg has an uncertainty volume associated with it because of the lens

aperture, the finite physical size of the hologram, and the nonzero size of the SLM pixels.

Dividing the accessible volume of k space by the value of the uncertainty volume yields the

maximum theoretical number of resolvable gratings or weights that can be stored in the

photorefractive crystal. For a 1-cm 3 crystal, the theoretical upper limit is 1010 weights, assuming
currently available SLM resolution and reasonable optics. That number of weights is sufficient to
form a fully interconnected network of 105 neurons. Partially interconnected networks with more
neurons can also be accommodated. Moreover, the entire neural neiwork can be read out or
updated in parallel without the time-multiplexing, data-contention, or bottleneck problems common
in electronic implementations. The great storage car, .ity is a direct result of the three-dimensional
nature of optical holographic storage.4

4
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Figure 2. Region of k space used for informtion storage in optical neural network based on
volumne hologramn.I
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Tn- h',allenge is to devise practicai neural network systems able to approach the theoretical

limit. Perhaps the most important obstacle is the degenerate nature of the Bragg conditioca, which
states that the angle of incidence of a light beam relative to a volume grating must match that of the
original writing beam in order for its associated beam to be reconstructed. However, that condition
is satisfied by a set of beams whose k vectors form a cone normal to the grating, as shown by

Figure 3. Therefore, a large set of beams other than the original beam can constructively scatter
off the grating, forming erroneous reconstructions and crosstalk. Two methods for avoiding the

*I problem have been suggested in the literature: subsampling of the SLMs and spatial multiplexing
of holograms. However, both methods are problematic.

II In the subsampling method, neurons are arranged in special nonredundant patterns on the
SLMs, and output planes are sampled only at certain locations. Thus, though false reconstructions
still occur, they do not contribute to the output. The special patterns can consist of fractal grids5 or
a combination of one- and two-dimensional sampling. 6 If the SLMs are capable of displaying3 NxN neurons, then this method can implement a total of N3/2 neurons and N3 weights. The
storage capacities of both the crystal and the SLMs thus have the same functional dependence on
dimensional scaling (ignoring limiting effects due to nonzero SLM pixel size).

However, the subsampling method does not allow the SLM space-bandwidth product to be
fully utilized for representing neurons. That is a major drawback. As discussed above, the storage

Ucapacity of a 1-cm 3 crystal should be sufficient to store the interconnections for an NxN array of
neurons where N = 500, which matches the capabilities of current SLMs such as the HRL liquid3 crystal light valve (LCLV). Unfortunately, because of the subsampling, only N3/2 neurons can be
implemented even though the SLM is capable of displaying N2 neurons. Since N = 500, the

neuron and weight storage capacity/throughput are reduced by factors of 22 and 500, respectively,

from the theoretical maximums for current SLMs. The light efficiency is also low because some of
I the light is diffracted to dead areas due to the Bragg ambiguity.

The spatial multiplexing method avoids the Bragg ambiguity problem by physically dividing
the crystal into separate volumes for each weight. However, such divisions effectively reduce the3 storage capacity to the low level of a two-dimensional hologram.

Figure 4 shows the general architecture of a subsampling photorefractive optical neural3 network. Pixels in the object and reference planes represent individual neurons. The neurons are
optically interconnected by coherent light beams diffracted from volume phase gratings, which are

stored in a photorefractive crystal and which control the strength and phase of the interconnection
* weights. The object and reference planes are physically located on the output faces of CRT-

* addressed LCLVs that modulate incident, collimated coherent light beams, resulting in the

-Ureflection of diverging beamlets of light from each neuron. The amplitude of each beamlet is

:37
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Figure 3. Geometric construction of Bragg ambiguity in single-grating-per-weight storage.
Many wave-vector pairs can read out each grating, but this architecture restricts the
arrangement of neurons on the SLM.
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controlled by the activation level of the neuron. The object and reference beamlets are collimated
by two lenses of focal length F. The collimated object and reference beamlets are incident on the
photorefractive crystal, where they interfere to form volume gratings and thus determine the
interconnection weights. Such holographic gratings form an outer-product or Hebbian
interconnection matrix [see Figure 1(a)] between the object and reference planes. Positive,

negative, or complex contributions to the interconnection weights can be implemented using two
exposure stages, with different phases of the LCLV readout light.

During readout, light from a particular neuron is diffracted from a photorefractive grating,

sampled by a beam splitter, and focused onto a detector plane, which can be a charge-coupled
device (CCD) or vidicon video camera. The object/reference detector planes are then optically or

electronically mapped onto the object/reference neuron planes.
Reflection holograms would be formed, as in Figure 4. That result is usually undesirable

because :he diffracted light from the reference plane would not propagate in the desired directic a to
reconstruct the object plane. However, an additional component, a phase-conjugate mirror, can be
introduced to phase-conjugate the light from the reference plane after it passes through the
hologram. The reference and object beamlets then form a transmission hologram that in turn
produces a real image of the object plane when the hologram is illuminated with light from the

reference plane. Using a PCM to allow a single SLM to both expose and read gratings in an
optical neural network was first suggested by Wagner and Psaltis.

The projected performance of the subsampled system can be estimated by analyzing the type

and amount of light. Three quantities of interest can be defined: N, the total number of neurons;

Nconn, the total number of interconnections; and R, the interconnection updating rate. N is simply
given by the LCLV active area divided by the square of the neuron separation:

N = it(D/2)2
(Ax)

2

where D is the diameter of the LCLV active area and Ax is the neuron separation, which is

determined by the angular selectivity of the' volume hologram, AO, and'the focal length F:

Ax = 2FAO

where the expression for AO was given previously. Combining the above expressions results in

10
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Substituting all of the above expressions into R = Nconn/tE results in a final expression that

contains only the independent parameters of the system:

Rconn = 87xl04euron (DnTzsin() 3 line 2

X 5WI%Idet Fdet

Assume the following reasonable values for the independent parameters:

&. 514 nm

n 2.5

TZ 5mm
4) 45 deg

D 50 mm

dneurn 30 .m

line 5 mW/cm 2

Idet 0.1 mW/cm 2

W(1%) 6 mJ/cm 2

F 500 mm

Fdet 275 mm

Those assumptions yield N = 1.7x10 5 neurons, Nconn = 7x10 7 interconnections, and R = lx10 7

interconnections processed per second (E = 8 s). This is the weight updating rate. Readout of

the neural net would occur at video rates, e.g. the corresponding readout rate would be 7x10 7

interconnections divided by 30 ms, or 2x10 9 interconnections per second. Though the exposure
time tE is relatively long, the massive parallelism resulting from the optical interconnections results

in a very high processing rate comparing favorably with that of electronic implementations.

The assumed values for the independent parameters are based on the current state of the art

for LCLVs and commercially available detectors without cooling or image intensification. The

value of Wl% = 6 mJ/cm2 is a best-case measured value for BaTiO3 with an applied electric field of

10 kV/cm. 5 The assumed values are impressive compared with the corresponding values of

electronic implementations, but they are limited by the subsampling of the SLM input plane.

Improved storage and throughput values would result if the need for subsampling to avoid

crosstalk could be avoided.

12



3 90TP9S77

3 . SECTION 3

STIMULATED PHOTOREFRACTIVE OPTICAL NEURAL NETWORKI
3.1 SPONN CONCEPT

I We have begun experimental verification of SPONN, a new and unique alternative method

for avoiding the Bragg ambiguity problem. Without sacrificing parallelism, it makes full use of the

SLM space-bandwidth product and provides much greater storage capacity than does the

subsampling method. The essence of our idea is to store each weight in a set of angularly and

spatially multiplexed gratings rather than in a single grating. The rejection of crosstalk may be
greatly increased by forcing a light beam to match the Bragg condition at each of a series of
spatially and angularly distributed gratings, as shown in Figure 5(b). An undesirable beam on the

degenerate cone of one grating (see Figure 3 above) is rejected by the remaining gratings. That
rejection allows the neurons to be arranged in arbitrary patterns on the SLM, increasing both

storage capacity and throughput as well as offering other benefits such as less stringent alignment
requirements and the use of the same crystal for both beam routing and storage of weights.

Though we use a larger fraction of the hologram space-bandwidth product to store each weight, the

increased storage space is more than offset by the improved utilization of the SLM input plane.
The physical process used to generate multiple-grating weight representation is phase

conjugation based on stimulated photorefractive scattering. Specifically, we propose the use of a

self- or mutually-pumped photorefractive PCM as both the storage element and the beam router in a

programmable optical neural network. Basically, self-pumped phase conjugation starts with an
image-bearing optical beam focused into a photorefractive crystal. Light scattered from crystal3 inhomogeneities will write gratings by interfering with the incident beam. The gratings will in turn

scatter more light through a dynamic two-wave mixing interaction in which light energy is3 transferred from the incident beam to other scattered beams.
If the relevant electro-optical coefficient is large enough and the interaction length long

enough, scattered light will be selectively amplified through the stimulated photorefractive gain

mechanism, which can be easily observed as beam fanning in crystals of BaTiO3 . Through

reflections of the fanned light at crystal comers7 or through photorefractive backscattering 8, the

stimulated process arranges gratings in volume distributions, which generate the phase-conjugate
or time-reversed image beam propagating backward along its original incident direction.

II A mutually pumpcd PCM operates similarly except that two image beams are focused into the

crystal. 9 The light from one beam forms the phase conjugate of the other beam and vice versa,

3 though the two beams may be incoherent with respect to each other. Gratings produced by the

3 13
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Figure 5. Use of multiple gratings to reduce crosstalk resulting from Bragg ambiguity.
(a) Single grating. (b) Multiple gratings.

interference of each beam with its own fanning light arrange themselves so as to form the phase

conjugates of the two incident beams. We will refer to self- and mutually-pumped PCMs

collectively as stimulated PCMs, or SPCMs.

The key point for our SPONN architecture is that each pixel in the image incident on the

crystal forms gratings with, and hence is connected to, many other pixels. The degree of

connectivity can be adjusted by varying the position of the crystal relative to the input lens. For

example, if the crystal is in the back focal plane of the lens where the Fourier transform of the input
image is found, light from each pixel will overlap with light from all other pixels, establishing a
very large, fully interconnected physical system suitable for implementing fully interconnected

neural network models. On the other hand, if a slightly misfocused version of the input image is
incident on the crystal, the pixel connections will be more localized, allowing neighborhood neural

network operations such as lateral inhibition to be implemented.
Moreover, the distributed gratings form precisely the continuum of spatially and angularly

multiplexed gratings described above as a method for avoiding Bragg ambiguity in optical neural

networks. Simultaneously, the gratings produce an output that is the phase conjugate of the input,

simplifying the optical design and making the system tolerant of component imperfections and
variations. The following subsections will discuss the architecture and operation of the SPONN

system as well as some initial experimental results.

14
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3.2 SPONN ARCHITECTURE

SPONN systems using self- and mutually-pumped PCMs are diagramed in Figures 6 and 7,
respectively. Neurons are represented by pixels on the HRL-invented LCLV10 an SLM capable of

displaying 105 pixels at video frame times (33 ms). In Figure 7, the plane of neurons is divided

into sections, L1, L2 , L3, L4, each of which represents a layer in the neural network. Light from

the optical neurons is directed into the self-pumped PCM. The conjugate return, consisting of the

input summed over the photorefractive weights, is directed by a beam splitter into a video detector

such as a CCD camera. The weighted sums are passed through nonlinear neuron-activation

functions electronically at video rates in the image processor, a frame grabber with nonlinear

lookup tables. The result can be either sent to the host computer as a final calculation or back to the

PCM through the LCLV if the network is being iteratively trained.

Incremental weight changes follow an outer-product or Hebbian learning rule. Multilayer

neural networks are implemented by devoting separate areas of the LCLV to each layer. Large

training sets of exemplar patterns can be accessed by means of optical or magnetic disk image

storage technology. For example, commercially available disk technology will allow us to access

thousands of 105-pixel exemplar patterns for training with random access times of less than

200 ms per pattern.

The readout time of an optical neural network (operative mode) in SPONN is one video

frame time (33 ms). The current limiting factors are the respons time of the LCLV and our use of
commercially available image processing components that are compatible with American video

engineering standards. The time required to modify the weights (training mode) depends on the

incident light intensity. However, for readily available continuous-wave (CW) argon laser powers

of 100 mW, the parallel weight modification time is approximately 100 ms for crystals of

commercially available BaTiO3 at room temperature. (Other HRL researchers have successfully

reduced the response time of BaTiO3 by two orders of magnitude through heating to 120"C.1 1) A

significant advantage of SPONN is that its optical parallelism makes the readout and modification

* Itimes independent of the neural network size. With room-temperature BaTiO3, the theoretical

* weight-processing throughput would therefore be 1011 interconnections per second for a network

* of 105 neurons.
Phase conjugation enables the weight storage method to compensate for optical distortions

and simplify the optical design and alignment. The only critical alignment is between the output

* •and detected images, but that can be performed electronically by the image processor. The use of a

single photorefractive crystal is another beneficial feature of SPONN, especially for multilayer
neural network models. Since coherent interference in SPCMs occurs between an incident beam

I1 15
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and light scattered from it, SPONN is less sensitive-to vibration than other coherent interferometric
optical neural networks in which separate, externally generated beams propagating over large
distances must be held stable with respect to each other to within a fraction of a wavelength.

Compact, rugged, laser-diode-pumped solid state lasers with large output powers are
becoming commercially available. 12 They could replace the relatively bulky, water-cooled argon
laser used in our evaluation experiments. With such a laser, the SPONN system would occupy
less than one cubic foot and be able to implement parallel neural networks potentially consisting of
up to 1010 interconnections. SPONN also lends itself to modularity, as multiple units could be
connected to the host computer bus, as shown in Figure 8. Multiple neural networks could then
execute simultaneously on the SPONN modules, with cooperative data exchange coordinated by
the host computer. Such a system could be readily expanded by simply adding more SPONN
modules to the host bus.

C8929.06.05

SPONN SPONN SPONN
1 2 N

~HOST

COMPUTER

Figure 8. Expandable SPONN architecture for parallel implementation of multiple neural
network modules operating cooperatively.

18
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i 3.3 SPONN WEIGHT MODIFICATION

Learning, i.e., weight modification, in SPONN is accomplished by modifying the
interconnection weights between neurons through changing the gratings in the photorefractive

material. The material equations of Kukhtarev et al. 13 permit the derivation of a set of coupled

differential equations that describe grating formation in photorefractive materials, assuming that
two complex optical amplitudes Ap and As (of the pump and scattered beams, respectively)
interfere coherently to form the space-charge field E: 14

UDA = .il (k/np) reffpAsE -
=x i2 2kn,

Dx"s = - (k/ns) reffsApE- 9As

I
DE + iEscApAs*
at -t [t(JAr2+IA 12)]

where Xp and xs are coordinates along the directions of propagation of the pump and scattered
waves, respectively, np and ns are the refractive indices in those directions, k is the optical wave

* number, reff is the effective electro-optical coefficient, t is the optical absorption coefficient, r is

the space-charge field decay rate, and Ese is a function of the material constants and grating wave
number. The above equations cannot begin to model the full complexity of SPONN, where a great
number of beams scatter and interact with each other in order to form a connection weight.

A more realistic model would require the solution of a very large system of coupled
differential equations consisting of a set of equations similar to those above for each grating in the
crystal, all coupled together. The boundary 'onditions would depend on details of crystal
geometry and inhomogeneities. Nevertheless, some understanding of the grating dynamics

relevant to weight formation can be obtained from the above equations by considering a single
* isolated grating. For example, the above equations demonstrate that the amplitude diffraction
* =efficiency or connection weight increases with the grating space-charge field E. Also, at initial

stages of grating formation (E E 0), the rate of formation is proportional to the product of the

* 19
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writing beam amplitudes. That vdlue corresponds to outer-product or h.bbian learning. The
steady-state value of E, obtained by setting the time derivative to zero, is also given by the product
of the steady-state pump and scattered beams.

One approach to learning in SPONN is to first initialize the connection pathways by turning
on all neurons. That establishes the gratings, which will then be modified during learning. ',nce
the time required to form gratings in a blank crystal is much longer than the grating adjustment
time, initialization also improves the learning rate. The gratings are adjusted during outer-product
or Hebbian learning in SPONN by forming outer products between error signals and the input
signals in the previous layer. The host computer calculates error signals by determining the
difference between the actual output of SPONN and the desired output, as discussed in subsection
3.4. Learning is conducted at a rate faster than the photorefractive response time, so the gratings
are never in equilibrium with the error signals. Since the photorefractive response time is intensity-
dependent, SPONN can be switched from the learning mode to the readout mode simply by
reducing the readout light intensity. Alternatively, hologram-fixing techniques can possibly be
used for nondestructive readout.

An important advantage of SPONN is its ability to implement bipolar weights that can be
selectively increased or decreased. That can be accomplished in several ways. For example,
shifting the phase of a neuron on the LCLV in turn shifts the phase of the gratings written by that
neuron and selectively erases connections between it and other neurons. Another method is to use
two sets of gratings for each weight, one for positive weights and the other for negative weights.
The difference between the two weight contributions is calculated electronically by using two SLM
pixels per neuron.

3.4 EXPERIMENTAL VERIFICATION OF SPONN CONNECTIVITY

We have experimentally verified SPONN connectivity using the apparatus diagramed in
Figure 6. Sample SPONN output demonstrating connectivity is shown in Figure 9 for an
arbitrary abstract array of 1024 fully switched on neurons. Readout with a partial version of the

training image fills in the central blank area, demonstrating that the outermost neurons have formed
connections with the central ones. Another example of connectivity is shown in Figure 10, which
presents complete SPONN outputs for complete and partial input images of a resolution chart.

Figure 11 illustrates the elimination of Bragg degeneracy. The steady-state phase-conjugate
output for a 1024-neuron input array on the LCLV is shown in the middle photograph. When the
entire array was shifted half a period in any direction by moving the data in the image proce: or

20
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Figure 9. Experimental demonstration of SP014N connectivity. (a) Input training pattern.
(b) Partial input. (c) Complete SPONN output.
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* Figure 11. Experimental demonstration of crosstalk reduction in SPONN. (a) Input training
pattern. (b) SPONN output for input a. (c) SPONN output for input a shifted by
half an array period.
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frame memory, the output disappeared immediately, demonstrating crosstalk suppression without

subsampling of the SLM. The output reappeared when the array was shifted a full period.

Figure 12 illustrates selective grating weight erasure by shifting the phase of a single neuron
on the LCLV. The phase of the indicated optical neuron was shifted by iR without affecting its

amplitude by modifying the optical amplitude versus applied voltage transfer curve. This was done

by rotating the LCLV relative to the input polarization which resulted in a non-monotonic transfer
curve. By adjusting the operating parameters two operating points with the same intensity but

phase shifted could be defined. Computer input via the crt which addresses the LCLV was then

used to select between the two operating points. A complementary grating in the crystal could then

be written which compensated the initial grating, implementing active coherent erasure of weights

by in effect adding a weight vector opposite in sign. In this manner bipolar weights can be
implemented in a photorefractive crystal. A disadvantage of this approach to implementing bipolar

weights is that although it requires only a single LCLV, gray scale operation is not possible since

independent control of both phase and amplitude is not possible over a continuous range of values.

This problem can be avoided by using a second LCLV operated in phase-only mode and imaging it

onto the amplitude/phase LCLV. The phase-only LCLV would then be used to both implement

bipolar weights and to compensate for phase distortions in the amplitude/phase LCLV. In this type

of coherent representation of bipolar weights it is necessary to measure the phase of the PCM

output interferometrically in order to determine the sign of the neuron outputs, which may result in
practical difficulties due to stability and alignment requirements. Spatial multiplexing of the

positive and negative parts of the weights using strictly positive connections can also be used to

represent bipolar weights. This approach has the advantages of requiring only a single LCLV and

not requiring coherent detection, but at the expense of using two pixels to represent each neuron

rather than one. However, the practical advantages may be worth the trade-off in neuron number.

We have investigated the effects of crystal position relative to the focusing lens on SPONN

connectivity. When the entrance face of the crystal is located in the back focal plane of the lens the

connectivity is global. As shown in Figure 13, each neuron is connected to almost all of the other

neurons in the input plane. This is perhaps not surprising since the region around the Fourier
plane contains the largest degree of spatial overlap between beans originating from neurons in the

input plane. In our initial experiments we were able to demonstrate a fanout of 256. When the

crystal was moved a few mm from the Fourier plane became more localized, with the range of

connections greatcr in the horizontal direction, as illustrated in Figure 14. This wais probably due

to the character of the light distribution at the entrance face being closer to an image of the input

plane rather than the Fourier transform. The spatial overlap between neuron light beams was then

more dependent on scattering and fanning in the crystal due to photorefractive two-beam coupiing

24



90TP9577

18441-1R1

Figure 12. Experimental demonstration of selective grating weight erasure in SPONN by phase-
shifting an optical neuron. (a) SPONN output for rectangular array input.
(b) SPONN output after phase shifting.
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effects, and also Fresnel reflections at the sides of thecrystal. Since fanning occurs predominantly

in the horizontal direction in BaTiO3 in this geometry, it is not surprising that the connectivity has a
larger range in the horizontal direction. The ability to control the range of connectivity by adjusting
the position of the crystal will be useful for implementing neural network models with localized

connections, such as many early vision models.

A nonfundamental but possibly practical limitation to SPONN connectivity is noise.
Potential types and sources of noise include laser temporal noise, backscattered nonconjugate light
from the PCM, poor conjugation fidelity, and detector noise. Fixed spatial noise or poor SLM

contrast can be partially offset during the learning phase. We believe that the detector signal-to-
noise ratio (SNR) may be the practical limitation for neuron fan-in/fan-out. Commercially available

cooled CCD or charge-injection device (CID) detectors may be necessary to achieve the full

connectivity potential of SPONN.

3.5 MAPPING OF NEURAL NETWORK MODELS

Abstract neural network models must be somehow mapped onto the optical hardware.

Figure 15 illustrates the neural network topology for a self-pumped SPONN. Figure 15(a)
shows a back-propagation neural network with a single hidden layer. The neuron plane on the
SLM is divided into three regions, L1, L2 , and L3, which correspond to the input, hidden, and

output layers of the neural network, respectively. The neuron activation levels are controlled by
the image processor (represented schematically in Figure 6). The grating connection pathways are
initialized by setting all neurons in all layers fully on until a steady-state phase-conjugate return is

observed on the video detector. Learning can then proceed.

First, as shown in Figure 15(b), an exemplar pattern is created by the image processor in
region L1 while inputs to regions L2 and L3 are turned off. The resultant light intensities that arise

from L1 and are detected in region L2 are then stored in the image processor after electronic

thresholding by means of lookup tables. Region L1 is then switched off, the thresholded output of

L2 is displayed on the SLM, and the resultant output intensity pattern in L3 is detected,

thresholded, and recorded in the image processor. An error pattern is formed electronically using
point-by-point subtraction in the image processor. (Because only one operation is required per
neuron, that step is not computationally burdensome.) The incremental weight adjustment for each
layer in the back-propagation procedure is given by the outer product of the error signal and the

put pattern for that layer. 15 As discussed previously, the incremental change in the diffraction

efficiency of a photorefractive grating is given by the outer product of the writing beams.

Therefore, the gratings in the PCM are adjusted and a single back-propagation pass is completed p
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by displaying, the error pattern in Ln and the input pattern in Ln.1, then sequencing down through
the layers. Subsequently, the next exemplar is displayed in L1 and the procedure repeated. Since
learning is a nonequilibrium process, the exemplar integration time must be less than the

photorefractive time constant to prevent the "forgetting" of previous exemplar contributions.
Learning networks with localized lateral connections can also be realized by placing the PCM

in a slightly misfocused image plane of the SLM rather than in the Fourier plane, as was

demonstrated experimentally in the previous section. Such an arrangement would be useful for
vision models that use lateral inhibition.

Holographic gratings normally form symmetric connections. Many neural network models,

such as the well-known back-propagation model, assume symmetric weights. However, SPONN
can also accept asymmetric weights. As shown in Figure 16(a), asymmetric SPONN

interconnections in which the forward weight is different from the backward weight can be
implemented by spatially shifting the output plane relative to the input plane in the image processor.

That produces two separate connections between pairs of neurons, one for the forward direction
and one for the backward direction. Such asymmetric weights would be useful for neural network
models with dynamic feedback.

Second-order neural networks can also be implemented within the SPONN framework.
Higher-order neural networks use weight tensors wijk... to interconnect products of neuron

activation levels XjXk... to outputs Yi:

yi = Ewijk. xx... ~

j k

Such networks are useful because a single layer of such high order neurons can be used to solve

problems that are not linearly separable and are therefore much more powerful than first order

single layer networks such as the Perceptron. In addition, several types of invariance (such as

translation and rotation) can be built into them on an a priori basis. 16 A limitation of high-order
networks is the large increase in the number of weights as the order is increased. The parallel

architecture of SPONN can be used to advantage in implementing a high-order neural network
optically. For example, a possible SPONN implem-ntation of a second order neural network is

illustrated in Figure 17. The products Xjxk formed from the neuron input layer activation levels are
formed optically by crossing two one-dimensional modulators to form a outer-product of the

activation vector x with. itsel. A third one dimensional ,, ,is used to modulate input light with
the output neuron layer activation vector y. The second order weighted connections are formed by
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Figure 17. Second order optical interconnects using one-dimensional SLMs in an outer-product
configuration.
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U focusing both the product matrix xTx and y into the PCM and detecting the conjugate signal. Since

separate weights are formed between each pair of input pixels, a weight wijk is formed between

each product XjXk and each output neuron yi. In this way a second order weighted tensor sum
described by the above equation is formed.I
3.6 RESULTS OF PERCEPTRON LEARNING EXPERIMENTS

During the 1988-1990 contract period, we perfo,'med experiments implementing the concepts
discussed above for optical learning in SPONN. Our first experiment was an attempted

implementation of the well-known Perceptron learning algorithm in a self-pumped SPONN, using

the apparatus diagramed in Figure 6. The Perceptron learning algorithm is a single-layer neural

network consisting of a set of input neurons connected to a single output neuron. It can classify
linearly separable input patterns. We chose it for our first attempt at implementation because it is3 the simplest neural network capable of learning and adaptation. The Perceptron learning algorithm

can be summarized as follows:

- 1. Initialize weights between input and output nodes to random values.

2. Enter pattern Ajm and store resultant value Bi of output node.

3 3. Form error signal 5im = Bi - Bim where Bim is the desired output.

3 4. Modify weights according to the outer product of the error signal and the input pattern:
Awij = il8imAfm, where 1l is the adjustable convergence parameter.

5. Increase m by one and return to step 2.

I
The loop is iterated until the error 5 is less than a specified small numerical value c for all training

3 Ipatterns.

In our SPONN implementation, positive and negative weights were represented with two
3pixels per node pair, one for the positive part and c.ie for the negative part of the weight. The two

pixel values were subtracted electronically to form the bipolar output. The training set of input

patterns consisted of the two images shown in Figure 18, a truck and a person. The neuron array

size was 64x64. The bright square in the central part of each image represents the desired state of

U 33
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(a)A

Figure '18. Iniput training patterns for Perceptron learning. (a) input truck image. (b) Input
person image.
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the output node. As each image was input into the PCM, the output node state was read by the

frame grabber and compared with the desired state. An error signal, used in displaying the

weights, was then shown on the LCLV along with the input pattern. The frame time was adjusted

to be shorter than the photorefractive response time to prevent the photoret'active gratings from

being in equilibrium with the input patterns.

The result is evident in Figure 19, which shows the PCM optical output for the two input

training patterns; the overlapping output patterns are due to the nonorthogonality of the input

patterns. We are currently investigating the reasons for the similarity of the two outputs. Even

though the two input patterns have many pixels in common one would expect a greater difference

between the output patterns. Figure 20 presents photographs of the scattered-light distributions in

the crystal taken from a vantage point above the crystal for the two input training patterns. The

photographs indirectly show the general locations of photorefractive gratings. The two light

distributions are not identical, indicating that different gratings were formed for the two input

patterns.

Plots of the total error versus iteration number showed that, after about 300 iterations, the

error decreased to zero for several iterations, after which it would increase and then decrease again.

That behavior was, we believe, due to unintended grating decay caused by the destructive readout

of the PCM gratings. A zero value for the error signal indicated that a solution had been found for

the weights. The weights, however, were subsequently modified by the readout process.

3.7 PERMANENT STORAGE OF WEIGHT VALUES

Conventional hologram-fixing techniques in photorefractive crystals involve heating and/or

application of an external electric field in order to transfer photoinduced gratings to space-charge

gratings in optically insensitive levels. 17 Initially, a hologram is written using conventional

photorefraction. A ic-phase-shifted space-charge pattern that compensates for the photorefractive

hologram is then induced by heating the crystal until ionic charge can move and cancel the space

I charge arising from the trapped carriers. Reducing the temperature immobilizes the ions again.

The trapped grating charges are then acti\ ated by flooding the crystal with light. Under an applied

3 or photovoltaic field, the mobile charges drift and become spatially uniform, leaving only the

mirror-image hologram, which cannot be erased with optical radiation alone. The ionic hologram

*I can be erased by reheating the crystal. In some cases, externally applied electric fields can be used

in place of or in combination with heating of the crystal to move the ionic charge. Researchers at

HRL recently demonstrated hologram fixing in Bi12TiO20 using these techniques. 18

:3
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Figure 19. Output patterns displayed during Perceptron learning. (a) For input truck image.
(b) For input person image.
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Figure 19. Output patterns displayed during Perceptron learning. (a) For input truck image.
(b) For input person image.j
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In ferroelectric materials with low coercive fields (on the order of 1 kV/cm) such as BaTiO3

and Srl-XBaxNb2O6 (SBN), an alternative technique has been demonstrated: electrical fixing by

domain reversal. 19 (The coercive field is the critical applied electrical field required to reverse the

polarization of a ferroelectric crystal.) A spatial pattern of domains can be produced by applying a

field just below the coercive value and opposed to the orientation of the existing polarization. If

that is done after the hologram is recorded, the domain pattern can mirror the recorded hologram.

Holograms fixed using domain reversal cannot be erased optically, but application of a strong

poling field will restore the initial blank state in the crystal.

Storage times greater than an hour can be .btained in BaTiO3 without fixing by reducing the

readout light intensity. Initial learning experiments would use dynamic refreshing of the weights

instead of fixing.
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SECTION 4

SUMMARY

In this final report for work performed in the period March 1988 to June 1990 we have

3described our efforts toward optical implementations of neural network models. Under this effort

we have begun development of SPONN (Stimulated Photorefractive Optical Neural Network), a

hybrid optoelectronic system for programmable, adaptive, and fully parallel direct physical

implementations of neural network models. In SPONN, neurons are implemented as two-

dimensional arrays of pixels (105 to 106 neurons) on a spatial light modulator which are

I interconnected optically in the third dimension. The nonlinear neuron activation functions are

implemented electronically. Individual connection weights are stored optically as a set of angularly3 and spatially distributed gratings generated by stimulated processes in a photorefractive medium.

These dynamic processes also generate the phase conjugate of the input light distribution. This
approach greatly reduces crosstalk between neurons due to Bragg degeneracy and permits

significant increases in neuron and interconnection storage capacities and throughput over

subsampled optical neural network implementations. Potential throughput rates are as high as 1011

I interconnections per second. Reduced system size and complexity result from the use of a single

photorefractive crystal for all optical tasks, including weight storage and beam routing by means of3phase conjugation. In addition, the phase conjugation compensates for distortions in the optical

components. The architecture is programmable and expandable, and it permits the implementation

of both fully and partially interconnected multilayer neural network learning models (e.g., the well

known back-propagation model), including laterally connected models. Both globally and locally
connected neural network models can be mapped onto the architecture. Higher order neural

network models in which connection weights are tensors rather than matrix elements can also be

implemented. We have described experimental results on SPONN connectivity, crosstalk3 suppression, and weight modification using the Perceptron learning algorithm.

I
I
U
I

* 39

I



5 90T9S77

5REFERENCES
1. G.C. Valley and M.B. Klein, "Optimal properties of photorefractive materials for optical data

processing," Opt. Eng. 22, 704-711 (1983).

2. E. Kratzig, F. Welz, R. Orlowski, V. Doorman, and M. Rosenkranz, "Holographic storage3 properties of BaTiO3," Solid State Commun. 34, 817-819 (1980).

3. H. Kogelnik, "Coupled wave theory for thick hologram gratings," Bell Syst. Tech. J. 48,3 2909 (1969).

4. P.J. van Heerden, "A new optical method of storing and retrieving information," Appl. Opt.
2, 387-392 (1963).

5. D. Psaltis, J. Yu, X.G. Gu, and H. Lee, "Optical neural nets implemented with volume
holograms," in Technical Digest of Topical Meeting on Optical Computing (Optical Society5 of America, Washington, D.C., 1987).

6. Y. Owechko, "Optoelectronic resonator neural networks," Appl. Opt. 26, 5104-51113 (1987).

7. J. Feinberg, "Self-pumped continuous wave phase conjugation using internal reflection,"
Opt. Lett. 7, 486 (1982).

1 8 J.F. Lam, "Origin of phase conjugate waves in self-pumped photo-mirrors," Appl. Phys.
Lett. 46, 909-911 (1985)

3 9. S. Weiss, S. Sternklar, and B. Fischer, "Double phase conjugate mirror: Analysis,
demonstration, and applications," Opt. Lett. 12, 114-116 (1987).

I 10. U. Efron, J. Grinberg, P.O. Braatz, M.J. Little, P.G. Reif, and R.N. Schwartz, "The
silicon liquid-crystal light valve," J. Appl. Phys. 57, 1356-1368 (1985).

I 11. D. Rytz, M.B. Klein, R.A. Mullen, R.N. Schwartz, G.C. Valley, and B.A. Wechsler,
"High-efficiency fast response in photorefractive BaTiO3 at 120oC," Appl. Phys. Lett. 52,
1759-1761 (1988).

* 12. G.T. Forrest, "Diode-pumped solid-state laser markets and production expand," Laser
Focus/Electro-optics 24, 57-74 (1988).

1 13. N.V. Kukhtarev, V. Markov, and S. Odulov, "Transient energy transfer during hologram
formation in LiNbO3 in external electric field," Opt. Commun. 23, 338-343 (1977).

14. G.C. Valley, "Competition between forward- and backward-stimulated photorefractive
scattering in BaTiO3," J. Opt. Soc. Am. B4, 14-19 (1987).

15. D.E. Rumelhart and J.L. McClelland, eds., Parallel Distributed Processing, Massachusetts
£ Institute of Technology Press, Cambridge, MA, 1986.

16. C. L. Giles and T. Maxwell, "Learning, Invariance, and Generalization in High-Order5 Neural Networks," Appl. Opt. 26, 4972, 1987.

5 R-1

I



90TP9577

17. D.L. Staebler and J.J. Amodei, "Thermally fixed holograms in LiNbO3," Ferroelectrics 3,
107-113 (1972).

18. S.W. McCahon, D. Rytz, G.C. Valley M.B. Klein, and B.A. Wechsler, "Hologram fixing
in Bil2TiO20 using heating and an AC electric field," submitted to Applied Optics (Dec
1988).

19. F. Micheron and G. Bismuth, "Electrical control of fixation and erasure of holographic
patterns in ferroelectric materials," Appl. Phys. Lett. 20, 79-81 (1972).

Publications

Y. Owechko and B. H. Soffer, "An Optical Interconnection Method for Neural Networks Using
Self-Pumped Phase Conjugate Mirrors," submitted to Optics Letters, Nov. 1990.

Y. Owechko, "Nonlinear Holographic Associative Memories," IEEE J. Quan. Elfhitron. 25, 619,
March, 1989. (Invited Paper)

Y. Owechko, B. H. Soffer, and G. J. Dunning, "Optoelectronic Neural Networks Bascd on

Holographically Interconnected Image Processors," SPIE Vol. 882, 143 (1988).

Y. Owechko, "Holographic Associative Memories," SPIE Vol. 1150, 164 (1989).

Patent

Y. Owechko, "Self-Pumped Optical Neural Networks," Filed U.S. Patent Application, PD 88450.

Presentations

Y. Owechko, G. J. Dunning, and B. H. Soffer, "Optical Neural Networks Based on Stimulated
Photorefractive Effects," 1990 Optical Society of America Annual Meeting, Boston. (Invited Talk)

Y. Owechko, "Photorefractive Optical Neural Networks," 1990 International Topical Meeting on
Optical Computing, Kobe, Japan. (Invited Talk)

Y. Owechko, "Self-Pumped Optical Neural Networks," Salt Lake City Topical Meeting on Optical
Computing, Feb. 1989.

Y. Owechko and B. H. Soffer, "Programmable Multi-Layer Optical Neural Networks With
Asymmetric Interconnection Weights," International Conference on Neural Networks, San Diego,
July 1988.

R-2



APPENDIX A

Submitted to Optics Letters
(Shortened Version)

* An Optical Interconnection Method
for Neural Networks Using Self-

Pumped Phase Conjugate MirrorsI
Y. Owechko and B. H. Soffer

Hughes Research Laboratories
3011 Malibu Canyon Rd

Malibu, CA 90265

Abstract

I We describe an optical interconnection method based on self-pumped phase
* conjugate mirrors in which each connection weight is distributed among many

angularly and spatially multiplexed gratings. This approach greatly reduces
crosstalk caused by the conical Bragg degeneracy associated with a single5 grating and permits the entie input plane to be used. Applications to optical
neural networks are described.
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Optics is often suggested as an alternative to electronic implementations of neural

network models because of its inherent parallelism and three-dimensional connectivity. TheI

global connectivity of optics is particularly appealing with regard to the communication

requirements of many neural network models in which each processing node or "neuron"

receives a weighted sum of the outputs of the neurons in the preceeding layer. Both spatial

light modulator (SLM) -based and holographic approaches for storing the weights have been

proposed. Holographic approaches based on photorefractive materials are attractive for the

implementation of large neural networks because of the large storage capacity1 and the I
capability for the adjustment of all inter-layer weights in parallel. To the best of our

knowledge, all previous holographic proposals have utilized one photorefractive grating to

store each connection weight.

A limitation of the single grating per weight approach is that even if the gratings are 1
formed in a thick medium with high Bragg selectivity, reading beams other than the pair that

originally wrote the grating can reconstruct an output be.am. For a single grating, all incident

K vectors which lie on a cone defined by the Bragg angle will read out the grating. This

Bragg degeneracy cone results in crosstalk between neurons which is unacceptable in neural

network models. One approach which has been suggested to avoid this problem is to arrange I

the pixels on the input and output planes in special nonredundant patterns such that unique

angles between pairs of writing and reading beams are defined.2 Extraneous connections are

still formed but they are made to areas of the input/output planes which are not allowed to I
contribute to the final output. Although this approach solves the grating crosstalk problem, it

also results in subsampling of the input SLMs and under-utilization of the available SLM I
space-bandwidth product. Specifically, if the SLM is capable of displaying N2 neurons with

N4 potntial interconnectionis, then the single grating per weight approach can only

implement N3/2 neurons and N3 weights, provided the storage capacity of the

photorefractive crystal is not exceeded. 2 The diffraction efficiency is also reduced because
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where Xp and xs are coordinates along the directions of propagation of Ap and As, np and ns

are the refractive indices in those directions, k is the optical wavenumber, reff is the effective

electrooptic coefficient in the direction of propagation, t is the space-charge field decay rate,

a is the absorption coefficient, and Esc-ED/(I+ED/Eq) where ED is the diffusion field and

Eq is the limiting space-charge field. It is clear from the above equations that the connection

weight between the two amplitudes Ap and As increases with the space-charge field E. The

growth of E during the formation of the grating is in turn determined by the product ApAs*

which matches the Hebbian learning rule common to many neural net models. Moreover,

the observed distributions of beams within a self-pumped PCM, which are determined by the

high coupling gain of BaTiO 3, scattering centers, reflections from crystal faces, and the

geometry of the PCM configuration, 4 suggest that light beams from the entire input plane

mix in the crystal, resulting in the, global interconnection of input pixels by a self-pumped

PCM, especially if the PCM is in the Fourier plane of the input spatial light modulator. 5,6

Since a beam from one pixel must diffract from a large set of spatially distributed gratings in

order to form the conjugate of a second pixel, the crosstalk should be low according to the

arguments presented previously.

We have performed a series of experiments to test these conjectures for the grating

selectivity and global connectivity of the SPONN (Stimulated Photorefractive-effect Optical

Neural Network) approach. In our first set of experiments, we tested the Bragg selectivity of

a self-pumped PCM operating in the internal loop geometry.7 The BaTiO 3 crystal was

obtained from Sanders Associates. The laser source was an argon ion laser operating at 514

nm which illuminated a fixed mask with a 9x9 square array of pixels consisting of 1 mm

diameter holes. The transmitted light was then focused into the crystal using a 100-mm focal

length lens. The crystal was located in the Fourier plane of the mask in order to maximize

the overlap between light beams from the pixels. The steady state conjugate return is shown

in Fig. 2a. The mask was then translated in a direction trar .verse to the beam path by half of
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the hole period in a time span short compared to the photorefractive response time of 5 sec,

which was set by the total power incident into the crystal of I mw. The output plane

immediately after the translation is shown in Fig. 2b. The lack of any observable signal

despite the regular arrangement of pixels in the input plane confirms that very little crosstalk

due to the Bragg degeneracy effect is present in SPONN. The signal-to-noise ratio of the

CCD video camera was 100:1. Translating the array by another half period so that the

1 original positions of the holes were reproduced resulted in the immediate reconstruction of

the conjugate signal, verifying that the gratings had not been erased.

I We then replaced the fixed mask with a Hughes Liquid Crystal Light Valve (LCLV)

3 in order to demonstrate global connectivity and associative recall. In this experiment the

initial input consisted of a 16x16 array of pixels, each of which was randomly assigned

5 values of 1 or 0. The steady state conjugate output is shown in Fig. 3a. We then switched to

an input consisting of a single pixel by translating an opaque mask with a single small

I aperture in front of the LCLV. (By using an opaque mask rather than simply turning off the

other pixels we eliminated extraneous readout of the PCM by background light due to the

finite contrast ratio of the LCLV.) The single-pixel input is shown in Fig. 3b and the

3 resultant conjugate output of the entire input pattern is shown in Fig. 3c. Note that weights

were formed between the pixel and all of the other active pixels, demonstrating associative

3 recall and global connectivity with a fanout of 1:128. The degree of fanout we could

demonstrate was limited by the sensitivity of our CCD camera, not by the PCM. The fact

that each pixel occupied 1/1000 of the active area of the LCLV suggests that a fanout of

3 1:1000 could have been observed if a sufficiently sensitive camera had been available.

Neural network models can be implemented using the multiple-grating per weight

approach. comp,x reflectance of pixels on the LCLV would represent neuron activation

levels. The conjugate return, consisting of the inputs to each neuron summed over the

Iphotorefractive weights, is directed by a beam splitter into the CCD camera, the output of

which is digitized and thresholded at video rates using lookup tables in an image processor

3 A-5



card in the host computer. In the case of feedforward supervised learning networks such as

backpropagation, error signals can be calculated by the host and displayed on the LCLV. As

discussed above, weight changes follow a Hebbian or outer-product learning rule. Tle

frame time of the LCLV would be adjusted to be shorter than the photorefractive response

time so that the gratings are not in equilibrium with the input light, since learning requires

that the output be dependent on the previous exposure history. Bipolar weights and weight

changes can be implemented either by coherent detection and erasure or by employing

separate positive and negative weights. The bipolar outputs can be formed electronically by

subtracting the contributions of the two sets of weights. Muti-layer neural networks can be

programmed in the same system by spatially multiplexing the layers on the LCLV and

sequencing through adjacent layers.

In summary, we have discussed SPONN, a method for holographically

interconnecting optical neurons which distributes each connection weight among a set of

angularly and spatially multiplexed gratings generated in self- and inutually-pumped phase

conjugate mirrors. We have presented experimental evidence of the reduced crosstalk,

optimum SLM space-bandwidth product utilization, and global connectivity of SPONN, and

discussed an architecture for implementation of multi-layered feedforward neural networks.

This work was supported in part by the Air Force Office of Scientific Research and

the Defense Advanced Research Projects Agency. We would like to thank C. Deanda for

skillful technical assistance and G. Valley and G. Dunning for helpful discussions.
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I 1 Figure Captions

Figure 1-A. Ewald sphere momentum-space diagram for Bragg matching to two gratings in

3 series. Only a single input/output wavevector pair can lie on the two Bragg cones

and satisfy the Bragg conditions at both gratings simultaneously.

3 Figure 2-A. Demonstration of elimination of Brugg degeneracy and crosstalk suppression.

(a) Steady state conjugate output. (b) Zero output observed after input array was

3 shifted by half a period. The conjugate returned immediately after the input array

was shifted by another half period.U
* Figure 3-A Demonstration of 1:128 fanout, global connectivity, and associative recall.

(a) Steady-state conjugate output for a 16x16 random binary pattern input.

3 (b) Partial input consisting of a single pixel. This represents only 1/1000 of the

active area of the LCLV. (c) Corresponding PCM output immediately after input

3 Iwas switched to that shown in (b).
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met by conventional computer architectures which use a memory. The performance of NHAM-type associative
small number of processing units, bus-oriented architec- memories is potentially superior to linear correlator ap-
tures, and address-based random access memory. proaches because, in addition to increased storage capac-

A more suitable memory approach for neural network ity and discrimination, the nonlinearities in NHAM allow
models is associative memory. Associative memories have it to make decisions and choose between a set of compet-
long been a subject of active research in both optical and ing possibilities on the basis of ambiguous inputs. Most
electronic computing. As described above, this type of importantly, its conceptual basis can be expanded to in-
memory is fundamentally different from conversional ran- clude optical implementations of neural network models.
dom access memory in that no separate address exists for In Section 11, after briefly describing linear holographic
each stored entity. Instead, the datum itself acts as a associative memories, I will discuss some of the theoret-
pointer to either itself (homoassociation) or to other stored ical aspects of a generic NHAM. In particular, I will de-
data (heteroassociation). Data can flow through the sys- scribe the relationship of NHAM to certain higher oruer
tem, exciting chains of associations until a decision is correlation neural network models. Well-known examples
reached in a global and parallel manner. Associative of first-order correlation neural network models are the
memories also have error correction properties in that a outer-product models of Anderson [10], Kohonen [51, and
complete undistorted set of data can be retrieved using a Hopfield [11]. Grossberg's formulations [12] also contain
distorted or partial version of input data. Error )rrection, outer-product terms. Outer-product models are in fact
which stabilizes the flow of decision making through the forms of the well-known Hebbian model of synaptic
neural network, is implemented using nonlinearities and learning. Higher order correlation models are general-
feedback. Many associative memory mathematical models izations of outer-product models in which the coupling
have been published and simulated on serial electronic matrix between neurons is a tensor. Section III is devoted
computers [1]. However, it is inefficient to map such to descriptions of some representative experimental im-
highly-parallel and fine-grained models onto single-pro- plementations of NHAM's.
cessor serial computers. Ideally, the architecture of a In any re, ew paper it is necessary to limit the topic of
neural network computer should reflect the highly paral- discussion. In keeping with the theme of this special is-
lel, associative, fine-grained, and nonlinear analog nature sue, I will limit myself to nonlinear optical holographic
of the neural network models. In particular, it would be implementations of associative memory using phase con-
advantageous to devote a processing unit to each neuron jugation or optical retroreflection. I will not discuss ma-
rather than multiplex neurons among processing units. trix-vector multiplier optical implementations of associ-
One approach to achieving such an architecture is to use ative memory [13], nor will I discuss more general optical
analog optical methods for parallel communication be- neural network architectures capable of supervised or un-
tween a large number of processing units represented by supervised learning. Optical neural networks based on
planes of pixels. matrix-vector multiplication use spatial light modulators

The good match between the parallelism and intercon- as two-dimensional masks to store the interconnection
nectivity of optics and the requirements of associative weights between arrays of discrete emitters and detectors.
memory paradigms has not gone unnoticed over the years. Multilayer optical neural network architectures [14] based
Gabor, the inventor of holography, appreciated its asso- on storing weights as holographic gratings in photorefrac-
ciative properties [9]. Some of the early experiments in tive crystals have been proposed which are capable of im-
holographic associations were performed by Collier and plementing such neural network paradigms as backward
Pennington. These efforts, in which a hologram was propagation and simulated annealing. For more informa-
formed from two object wavefronts, were termed "ghost tion on these subjects the reader should consult the ref-
image holography " When the hologram was subse- erences. Finally, I wish to apologize in advance to any
quently illuminated with part of wavefront A, a complete workers whose relevant work has inadvertently not been
version of wavefront B was reconstructed. These holo- included here.
graphic associative memories suffered from distortions, II. OPTCAL ASSOCIATIVE MEMORIES

poor signal-to-noise ratio (SNR), and low storage capac- In this section I will discuss some theoretical issues re-
ity. Later, page-oriented holographic memories were de- lated to storage capacity which are common to various
veloped which used mechanical or acoustooptic deflection NHAM implementations. However, it will be instructive
of reference beams to read ouc one of many spatially-sep- firt to briefly discuss earlier work in linear holographic
arated subhoiograms. The selection of a particular stored ..... obifydsuserirwr nlna oorpipagefor readout was based on the correlation of the input associative memories in order to establish basic princi-
pagefro ut w as ased onts, pies. These principles will provide a framework for the

Therests ofth rectreseaierln e k mdiscussion of nonlinear holographic associative memoriesThe results of recent research in neural network models which incorporate ,'eedback and gain using phase conju
has inspired workers in optics to add gain. nonlinear feed- gate resonator configurations.
back, and competition to holography and create a new
class of optical associative memory. NHAM (nonlinear A. Linear Holographic Associative Memories 1
holographic associative memory). Phase conjugation is 1) Ghost Image Holography and Page-Oriented Holo-
often used to implement these features of associative graphic Memories. The associative properties of holog-
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raphy have been recognized ever since the invention of suit is
holography by Gabor [151. Van Heerden [16] predictedin 1963 that a hologram would produce a "ghost image" otu T{Aof a stored image upon illumination of the hologram with = b * (a o a) (3)

a fragment of the original image. This was subsequently
confirmed by Stroke et al. [17]. These early ghost image where * and o denote convolution and correlation, re-experiments were characterized by poor image quality and spectively. The origin of the associative ghost image issignal-to-noise ratio (SNR). The invention of off-axis hol- now clear. The input image a(x, y), is correlated withography by Leith and Upatnieks [18] greatly improved the itself and then convolved with the associated image b(x,SNR by angularly separating the desired signal term from y). If the autocorrelation of a (x, y) is sharply peaked, thethe undesired noise due to self-interference among scat- convolution of a(x, y) with b(x, y) results in an outputtered waves from the original image. Pennington and Col- closely resembling b(x, y). Thus upon input of a(x, y)Slier [19] demonstrated ghost image reconstructions using the wavefront b(x, y) is reconstructed, forming a heter-this off-axis approach. oassociation. Since fragments of a(x, y) also form sharpGhost image holography can be mathematically de- correlation peaks when correlated with a(x, y), a com-
scribed as follows. Consider two complex wave ampli- plete version of b(x, y) is still formed when a partial ver-tudes a(x, y) and b(x, y) in a first plane (x, y). The two sion of a(x, y) addresses the hologram, although the re-wavefronts are allowed to propagate over a distance L to construction is of reduced resolution. Leith and Upatnieksa second plane (u, v) where a photosensitive holographic demonstrated the marked improvement in image recon-plate is located. Assuming the transmission of the devel- struction quality possible by using diffuse illumination.oped plate is linearly proportional to the incident light in- This has the effect of increasing the spatial frequency con-tensity and diffraction within the hologram can be ne- tent of a(x, y) and thereby sharpening its autocorrelation,
glected (thin hologram approximation), the amplitude which improves the resolution of b(x, y).transmission of the plate will be proportional to Vander Lugt [201 introduced the use of off-axis holog-

T(u, v) = IA(u, v) + B(u, v)I2 raphy for matched filter recognition of objects by lettingb(x, y) be a delta function so that B(u, v) is a tilted plane
- A 11 + 2 + A + (1) wave. If a lens is now placed behind the hologram thecorrelation of the input image with the stored image ap-- Iwhere A(u, v) and B(u, v) are the Fresnel-Kirchhoff pears in the back focal plane. If the input image matches

transforms of a(x, y) and b(x, y), respectively: the stored image a bright spot appears in the back focal
plane or correlation plane. Moreover, the location of this(u v el"(U2+t'2)1xL 'a'(x, y) spot corresponds directly to the location of the matching

A(u, ) e /  image in the input plane.
e- 2v(xu+ t)/L dx dy The Vander Lugt linear optical correlator has found

many applications in pattern recognition, signal process-
where ing, and optical associative memories. One of the earliestapplications of the optical correlator for optical associa-a'(x, y) = a(x, y)e(x+Y2)/xL. tive memories was in the page-oriented holographic as-

sociative memory (HAM) [211 for digital computers. InWhen the hologram is subsequently illuminated with this application memory data were stored in a large num-wavefront A, the resultant output A(u, v) T(u, v) will ber of spatially-multiplexed holograms. During recording
consist of several terms: different data planes or "pages" were recorded in eachA (u, v) T(u, v) = 1A1A + IBIA + A + BAA. hologram sequentially by shifting a plane wave referencefrom hologram to hologram. In the readout phase the light

(2) from the input data page illuminated the entire set of hol-* ograms. An associative search of all of the stored dataThe first two terms represent on-axis noise terms. The could be performed simultaneously. A detector matrix de-third term is an off-axis "twin wave" which is not of in- termined the location of the resultant correlation peak
mterest. The last term (which is angularly separated from which determined the location of the hologram containing*the other terms assuming atx, y) and b1x, y) were spa- the matching data. This information was used to shift a* tially separated in the (x, y) plane) represents the basis readout reference to the proper hologram for readout offor holographic associative memory. The analysis will be the associated data. The system could also be used forsimplified without loss of generality if we assume the heteroassociation by shifting the readout beam to a holo-spherical phase terms in a' (x, y) and b' (x, y) are can- gram different from the matching one. Associations could

celed using lenses so that a'(x. y) = a(x, y). This cor- be made by processing the correlation plane with lookup
responds to forming Fourier rather than Fresnel holo- tables.
grams. If we Fourier transform the output of the hologram Such page-oriented associative holographic memorieswith a lens and consider only the last term in (2), the re- are capable of large storage capacities but are limited in

B-4



IEEE JOURNAL OF QUANTUM ELECTRONICS. VOL 25. NO, 3. MARCH 1989

some respects. In particular, the systems are not shift in- bm
variant. They work, best if the matching patterns always BEAMS

appear in the same position. In addition, they handle mul-
tiple associations serially because of the mechanical scan- RETRO.o
ning of the readout beam. This lookup table approach bbm
makes page-oriented HAM's unsuitable for implementa- H

tions of neural network model-inspired associative mem- .'
ories. In response to the need for highly-parallel architec- amo

tures for neural network models, a new class of HAM's
has been developed recently which is also based on the S o AM

optical correlator. These new devices also perform asso-L- INPUT

ciations using correlation as a measure of similarity.
However, unlike page-oriented HAM's, these nonlinear STOREO am

holographic associative memories (NHAM's) use nonlin- [j IMAGES

ear gain and feedback provided by phase conjugation to
implement competition between stored memories. This Fig I Rccording and readout ofobjcti in reference-based NHAM
competition is used to perform associations with error
correction and improved SNR on multiple inputs in par- erence beams (b") is generated. Each reconstructed ref-
allel. erence beam is convolved with the correlation of the input

object with the stored object associated with that panic-
B. Nonlinear Holographic Associative Memories ular reference beam. This part of the system is identical
1) General Description. Both ghost image holography to a matched filter Vander Lugt correlator. The distorted

and Vander Lugt (matched filter) correlators are forms reconstructed reference beams are phase conjugated b) the
of optical associative memories in that they return one reference leg PCM and retrace their paths to the holo-
image when addressed with another. Ghost image holog- gram. These beams then reconstruct the complete stored
raphy. however, suffers from poor storage capacity and objects. The reconstructed objects are phase conjugated
SNR due to distortions arising from the correlation-con- by the object leg PCM and the process is iterated until the
volution operations described in the previous section. system settles into a self-consistent solution or eigen-
Spatial multiplexing cannot be used to improve the SNR mode. assuming the gain of the PCM's is sufficient for
if all stored images or "objects" are to be recalled in the oscillation. In the absence of the hologram the phase con-
same position, which results in the superposition of cross- jugate resonator can support a continuum of different res-
correlation noise in the output plane. This superposition onator modes. The eigenmodes of the NHAM resonator
further reduces the SNR and the storage capacity. The are defined by the stored wavefronts in the hologram.
Vander Lugt correlator. on the other hand, has good SNR An important common feature of NHAM's is nonlin-
due to its large processing gain. However, it is not very earity. Without it NHAM's could not "choose" a panic-
useful as an associative memory because it maps input ular memory over all others and the output would be a
objects into autocorrelation peaks in the output plane in- linear superposition of multiple recalled memories. If the
stead of associating one optical image or object with an- stored objects are considered to be vectors in state space.
other. then NHAM nonlinearities form regions of attraction

The NHAM is an optical associative memory which around the stored object vectors in a manner analogous to
combines the fully -parallel image-to-image heteroasso- neural network formulations of associative memory. The
ciative capabilities of ghost image holography with the nonlinear response and multiple stable states of the
high SNR, processing gain. and stoi'age capacity of NHAM allow selections between patterns to be made on
thresholded Vander Lugt correlators. In addition. nonlin- the basis of incomplete data since gain will exceed loss
eanities allow an NHAM to select a particular stored only for the stored pattern with the largest overlap with
memory over all others on the basis of incomplete input the input pattern. Nonlinearities also improve the SNR
data. A schematic diagram of a representative NHAM and storage capacity over ghost image holography or lin-
system is shown in Fig. I. The heart of the system is a ear matched filter correlators. The output association is
holograni in %&hi,.h Fourier transforms of obje-.ts a"' are available in two torms depending on where the output is
recorded sequentially using angularly multiplexed refer- coupled out. The reference side of the NHAM is essen-
ence beams b"'. as shown in Fig. 1. For readout of the tially a Vander Lugt correlator where a correlation peak
NHAM. phase conjugate mirrors (PCM's) or other means marks the location of the recognized object in the input
of forming retroreflected time-reversed beams are posi- plane. In the object leg an undistorted version of the as-
tioned on both sides of the hologram, forming a phase sociated stored object is superimposed over the partial in-
conjugate resonator. The hologram divides the resonator put object. The output can be separated from the input -
into the object and reference legs. When a partial or dis- with a beamsplitter.
torted version of object ino(a"') addresses the hologram 2) Storage Capacity. In this section I will discuss the
via the beamsplitter. a set of partially-reconstructed ref- effects of nonlinearities in the reference leg on the SNR
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convolution terms in the reference leg, which permits me
H to disregard cross terms due to the nonlinear reflectivity

f(). To facilitate the analysis and allow direct co~pari-
INPUTi sons with some outer-product type neural network models
OUTPUT of associative memory, I will assume objects consist of

H N-dimensional vectors whose components assume values
of + 1 or - 1. (Objects consisting of analog vectors can
also be stored in NHAM's. This binary representation is

OBJECT CORRELATION used to simplify the analysis.) I will further assume that
DOMAIN DOMAIN the reference functions b' are uniformly distributed and

Fig 2. Block diagram of iteraive model of NHAM. equally spaced in the object plane. If these spacings are

3 awider than the widths of the objects, then by placing anand storage capacity of NHAM's. The resonator nature of
the NHAM is illustrated in the block diagram of Fig. 2. aperture over the output plane only reconstructions for
Assuming thin Fourier transform holograms and using the which m = ' in (6) are retained. This aperture prevents

* same approach as in (1)-(3), an iterative equation can be ambiguities in the output plane which would otherwise
w oooccur if a thin hologram is used. The reference beam re-constructs not only object mO centered on the input object

['nO ) ] a but also all other stored objects. The aperture blocks these
aI = (f (a1 am) * b' * other objects since they are displaced from object nO, but

at the cost of a reduced amount of shift invariance in the

(4) field of view (FOV). As more objects are stored the
r iamount of unambiguous shift invariance is decreased pro-

where af is the amplitude in the object leg after the nth portionally. The hologram can store only a single object
round-trip through the resonator, am are the objects stored with shift invariance over the entire FOV. (Another lim-
in the hologram, b'" are the reference beams used in hol- itation on the shift invariance and storage capacity is thatgrpiayreodnthobetf)rersnste the total space-bandwidth product of all shifted versionsographically recording the objects, f ( ) represents the
nonlinear reflectivity of the reference leg, and F( ) rep- of the stored objects cannot exceed the space-bandwidth

resents an output plane point nonlinearity. The input product of the hologram [22], [23].)
"seed" aoj1 for the resonator is a partial or distorted ver- An estimate can be made of this FOV tradeoff between
sion of object mO. The output in the nth round-trip con- the number of stored objects and degree of shift invari-
sists of a double sum of cascaded correlations-convolu- anc'!. For example, assuming a Fourier transform lens fo-
tions. The double sum over the object indexes m and m' cal length of F, a shift invariance of X implies an angularCI is due to the double-pass through the hologram. Assuming spectrum range at the hologram of
the reference beams are angularly multiplexed plane
waves, the b" functions are spatially displaced delta func- 6 = X/F. (7)
tions:

If we further assume the hologram has good diffraction
= - x). (5) efficiency for a range (P of reference-object beam angles.

(It should be noted that although all the calculations here then the number of objects that can be stored with shift
are being done in one dimension, these results are readily invariance X in two dimensions is limited by FOV ambi-
extended to the two-dimensional images in NHAM asso- guity to

I ciative memories.) Substituting (5) in (4) results in the M = (AO/0) 2.  (8)
following iterative equation for the object leg optical am-
plitude distribution after the first round-trip through the For parameter values of F = 500 mm, X = 10 m, 4,, =
resonator: 300, and out-of-plane reference beams, the maximum

> -number of stored objects limited by FOV ambiguity is M
am(x) = F f[cr . (x - x. + x) *a"(x) = 680. The FOV ambiguity issue is moot for volume hol-

in' m ograms because Bragg selectivity prevents reconstruction

(6) of beams angularly shifted in the same plane as the orig-
inal reference and object beams. (The selectivity is muchwhere less, however, for out-of-plane shifts [24].)

o aAssuming an aperture which eliminates the ambiguousI (x) a. -I oa'reconstruction, only terms for which m = m' are retained

C'(x) is the correlation between the stored object m and in (6):U the resonator amplitude distribution in the nth iteration. I
have assumed that the angular separation between refer- a"(i) = F f(C;'-i(p)) am(i - P) (9)
ence beams is large enough to separate the correlation- P
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The SNR for NHAM in the first iteration or at the end 1
3  M-N 3

of the first round-trip [before pointwise nonlinear trans- W a n , 3 M-N
2

formation in the object domain by F( )] can be calculated n - 2 M- N

from 0 t02  o OUTERfrom to PRODUCT",
f[ Cm("] 

MODEL

00

SNR 0

0 00
j~ofc()I+ m ,, 1 f[C'(p)]I -

(10)

I will now make some assumptions concerning the statis- N. NUMBER OF ITSIOBJECT

tical properties of the stored objects in order to calculate Fig. 3. Comparison of storage capacity of reference-based NHAM with

the Cm (p) cross correlation coefficients. In particular, I the outer-product model for nonlinearities in correlation domain of form
will assume the objects are random and not orthogonal- f(x) = x'. Error-free input objects assumed. (After 1311.)

ized so that the statistics can be described by a balanced
binary phase diffuser model [25]: is bounded from above by N [26]. McEiiece et al. [27],

Bruce et al. [28], and Weisbuch and Fogelman [291 ap-
Co'(p) = Nb(p) + 42(N - Ip)/13, if m = mO plied techniques from coding theory to the outer-product

= %2N- Ip 1/3, if m mO model and showed that for random objects the maximum
asymptotic value of M for which all objects can be re-

(11 ) covered exactly is N/(4 log N) as N approaches infinity.
Their results also implied that if a specified nonzero error

furherNis th fize) the o noinecty incthe, ree rate in recall can be tolerated, the asymptotic storage ca-
further thatf(x), the point nonlinearity in the reference pacity becomes linear in N. Gardner [301 extended these
or correlation domain, has the form f (x) = x" . (The ef- results to a higher order generalization of the outer-prod-
fects of arbitrary nonlinearities can then be estimated by uct model. Owechko et al. [311 performed computer sim-
using a polynomial approximation and superposition.) ulations of the storage capacity of the outer-product and
Substning these expressions in (10) and performing the NHAM models. The results are shown in Fig. 3 for the
smion oe nexpres- number of vectors stored as a function of N for power law

nonlinearities with n = 2, 3, and 4. Each curve was aver-
N',- 1

)/
2  aged over many runs using randomly selected vectors.

n+ )/2 Because the input vectors did not contain any errors, the
%fm- simulations in effect tested the stored vectors for being

N >> 1 (12) eigenvectors of the system.
Combining (12) and (13) and solving for the nonlin-

where 3 is the fraction of am0 used as the input object and earity n = nop which results in an NHAM storage capacity
M is the number of stored vectors. A heuristic estimate equal to the outer-product model gives nov approximately
for the storage capacity can be obtained by solving (12) equal to 2. This is verified in Fig. 3 as the slopes of the
for M in terms of N. Assuming a minimum SNR required M versus N curves plotted on logarithmic scales equal
for successful associative recall, M should be proportional n - 1 and the capacity for n = 2 is approximately equal
to N"- 1. The proportionality constant is given by the min- to the outer-product model. Although the above SNR ar-
imum SNR required by the particular NHAM system for guments and simulation results demonstrate the improve-
successful convergence. Therefore, within limits set by ment in storage capacit. caused by nonlinearities in the
the available dynamic range, we can conclude that the correlation domain, the heuristic nature of the arguments
storage capacity of an NHAM can be increased by in- are evident in light of the asymptotic results of McEliece
creasing the nonlinearity in the correlation domain. A et al. for the outer-product model capacity.
similar analysis for the outer-product associative memory The improvement in storage capacity of an NHAM over
results in an outer-product associative memory is due to its close

SNRouter.produc t = 120 - I I (13) analogy to certain higher order discriminant models. One
form of the nth order discriminant model can be defined

which, using the above SNR arguments, implies that M, as a generalization of the outer-product associative mem-

the number of stored objects, should be linearly propor- ory model in which the W,, weight matrix is a tensor of

tional to N. The storage capacity of an outer-product order n + 1:
model was reported by Hopfield as linear in N based on
empirical evidence for small N values [12]. Using a hy- Wl .'. = xmj"Xs' " X1' (14)

perplane counting argument, Abu-Mostafa and St. Jacques
have shown that the capacity of the outer-product model where the X' are one-dimensional stored vectors. The
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output is calculated by forming a tensor product: using nonlinear gain saturation. Some specific implemen-
tations of these categories of NHAM, which vary mostly

Xt pul = F[ Z Z, .. - , Z IX'nPU1 in the nature of the feedback and thresholding mecha-
I J1 J, In nisms, will now be described.

.,rput... Xtnnp B. Multipass NHAM Configurations

1) Phase Conjugate Mirrors: Soffer et al. [381, 1391
[ (X . 'n ) X' '  (X , Xn '"X' " ] have demonstrated NHAM's which use thin thermnoplastic

Xm. X + Z 's, xinpul)"X Fourier transform holograms as the storage medium. Ad-
,, P*,no Ivantages of this approach include shift-invariance and the

(15) capability of programming heteroassociations by manip-
ulating the correlation plane. A disadvantage is the lack

The tensor generalization greatly increases the number of Bragg selectivity which results in low information stor-
of degrees of freedotn which results in dramatically in- age capacity compared to volume holograms.
creased storage capacities [32]-1341. Comparing (15) and This NHAM structure is identical to Fig. I and the the-
(9) shows that a power law nonlinearity of degrec n in the ory of the previous section is applicable without modifi-
correlation plane of an NHAM is analogous to an nth or- cation. I experimental demonstrations a single iteration
der discriminant function. A polynomial nonlinearity in nonresonating configuration was used, as shown in Fig.
the correlation plane is analogous to a weighted sum of 4. Two objects were recorded sequentially in the holo-
higher order discriminant functions. They are not com- gram, each with its respective angularly-shifted plane
pletely equivalent because inner products are used in the wave reference beam. The hologram was recorded at
outer product model as opposed to correlation in the 514.5 nn using a Newport Corporation thermoplastic hol-
NHAM. This results in additional noise terms in the ographic camera. A partial version of one of the stored
NHAM arising from the wings of the correlation function. objects was then used to address the hologram. A lens was

Other sources of noise will also be present in practical used to focus the correlation plane output of the hologram
NHAM systems. These noise sources include dielectric into a PCM based on degenerate four-wave mixing
inhomogeneities in the holographic medium and detector (DFWM) in BaTiO3. Typical parameters for PCM oper-
noise [35]. For photorefractive materials, erasure of pre- ation were wavelength 514.5 nm.2 forward and backward
viously recorded holograms during recording and subse- pump fluxes 3.3 and 11.5 W/cm-, respectively: internal
quent readout may also limit the storage capacity [36], pump-probe angle 26*; and internal angle of grating k
although fixing techniques [37] may remove the later lim- vector to c axis 130. The output of the hologram acted as
itation. These factors will reduce the storage capacity from a probe for the DFWM system, generating an amplified
the theoretical diffraction-limited estimates of Van Heer- phase conjugate of the correlation plane. The conjugated
den. Accurate estimates will be specific to the particular backward propagating beam illuminated the hologram,
system being considered. recreating a complete version of the stored object. Ex-

I Iamples of stored objects, partial inputs, and reconstructedSIII. IMPLEMENqTATIONS outputs are shown in Figs. 5 and 6. The capability of a
A. NHAM Categories reference based NHAM to handle gray scale objects is

NHAM implementations can be categorized based on demonstrated in one of the examples. In this series of ex-
the resonator geometry and the method used for generat- periments a single pass nonresonator configuration was
ing the reference beams used in recording the holograms, used and the PCM was operated in the linear reflectivity
They can be further differentiated by the form and imple- regime of DFWM. Thresholding, whether due to com-
mentation of the nonlinearities. Most of the systems re- petition between resonator modes caused by gain satura-
ported to date have been based on a double PCM reso- tion or to nonlinearities in the PCM reflectivity, was not
nator configuration similar to the one described above in demonstrated in this system. The quality of the recon-
which a separate independent reference beam is associ- structions using what was basically a linear associative
ated with each object beam. The reference beanms are gen- memory was due to the coding of the objects using high
erally plane waves, so that the reconstruction quality can spatial frequency diffusers in contact with the objects. The
be controlled by adjusting the nonlinearities in the corre- sharpened autocorrelation pcaks ofthe diffusers improved
lation domain without loss of gray scale fidelity in the the resolution of the objects.
object. (In general, most NHAM implementations to date 2) Electronic Lookup Tables: In order to address the
have not relied on the nonlinearity of the PCM's, instead issues of implementing controllable arbitrary nonlineari-
various external nonlinear mechanisms have been used.) ties in the correlation plane and making diffusers unnec-
Ring resonator geometries have also been proposed and essary, increasing the optical gain in order to achieve res-
demonstrated which derive the reference beam from the onator oscillation, and facilitating the interfacing of an
object beam. Although such systems lack some of the dis- NHAM to an electronic host computer, Owechko [40] sug-
crimination obtainable using separate reference beams, gested and implemented a hybrid optical-electronic
they do incorporate competition between stored modes NHAM based on liquid crystal light valves (LCLV's). A
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-Fig. 7. Block diagram of hybrid NHAM. (A" , (401.)
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Fig. 4 Configuration used in assoclatuse memory esperiments by Soffer FDET

et al. (After 1391.) "REFERENCEL
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. Fig. 8. Schematic diagram of hybrid NHAM. (After 1401.)

(a) (b) (c) block diagram of the hybrid NHAM is shown in Fig. 7
IMAGE STORED INCOMPLETE ASSOCIATED and a detailed schematic in Fig. 8. The basic principles

IN M'MORY INPUT IMAGE OUTPUT IMAGE of the hybrid NHAM are the same as described for the
Fig. 5. Reconstruction of gray scale image from partial input* (a) image all-optical NHAM. The implementation of the input and

stored in hologram: Ib) partal input image. (c) associated output image ack ca n ae hoeert quite int an-

(inversion due to mirror reflectioni. (After 1391.) feedback mechanisms are, however, quite different. In-

stead of using DFWM in BaTiO3 to create true phase con-
jugates of the reconstructed reference and object beams.
a pseudoconjugation system using video detectors and
CRT-addressed LCLV's was used. Referring to Fig. 8.

A the partial input image is focused onto an object loop video

detector and transfers the image to a CRT-addressed
*LCLV. The optical output of the object loop LCLV ad-

dresses the thermoplastic hologram and reconstructs the

a correlation plane which is focused on the reference loop
video detector. A one-to-one mapping is performed be-
tween the detector and the output of reference loop LCLV.

*which is positioned in the back focal plane of the corre-
lation lens. Thresholded correlation peaks on the refer-
ence loop LCLV are converted into backward propagating
plane wave reference beams by the correlation lens. These

T* beams address the hologram, reconstructing recorded ob-
jects which are in turn focused on the object loop videoLJ detector, closing the resonator loop. The combined gain
of the detector/CRT/LCLV loops is more than sufficient

IMAGES IMAG ES PARTIAL ASSOCIATE to overcome the optical losses, resulting in a feedback
ISTORED STORED INPUT OUTPUT system. The advantage of this approach is that general

IN MEMORY IN MEMORY IMAGE IMAGE nonlinear feedback functions can be easily programmed.
(DISPLACED) SUPERIMPOSED Between the reference loop video detector and the LCLV,

Fig. b ReLunstruiun l k)mIplete objc.ts from partial input objects for the correlation plane is nonlinearly processed in elec-
multiple stored objects (a) images stored in hologram. (b) superimposed tronic form using digital lookup tables in a PC board level
images shown as recorded; (c) partial input images: (d) corresponding
output image%. (Alter 1391.) image processor. The image processor can also be used
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to program heteroassociations or multilayer optical neural INPUT LATCH ED OUTPUT

networks by shuffling subregions of the correlation plane
[321.

In preliminary experiments using a 20 mW HeNe laser
at 632.8 nm, a single object-reference pair was recorded
in the hologram. This demonstration showed that the hy-
brid resonator has at least one stable state which can be
reached only if the injected signal is sufficiently similar
to the stored image. As shown in Fig. 9, if more than 50
percent of the object were injected into the system, reso- Fig. 9. Hybrid NHAM latched output for partial input. (After 1401.)
nance would occur and the system would latch onto the
stored object. The object would continue to circulate in REFERENCE BEAM

the resonator after removal of the input, demonstrating I
bistability. Interruption of the circulating beam would re-
turn the resonator to its initial zero state. The hybrid It"
NHAM demonstrated robustness in the face of input dis- - - 3 - 3

tortions. For example, if the input object was rotated by
up to 10 ° , the output would still switch to the resonator f i f
state consisting of a circulating undistorted version of the IMAGESTO FOURIER HOLOGRAM
stored object. The amount of tolerable distortion in- BE STORED TRANSFORM,
creased as the sharpness of the nonlinearity in the corre- LENS

Fig. 10 Recording of multiple objects in a thin Fourier transform holo-

lation plane was increased. The system would not latch gram using spatial multiplexing of the objec.s. (After 1411.)
for different input objects, indicating the resonator was
recognizing the input object and not merely being P, LP

switched by stray scattered light. f f
3) Pinhole Array: Paek and Psaltis [41] have demon-

strated two different NHAM systems. In the first system, L2

a single-pass passive system shown in Fig. 10, a set of "-
spatially multiplexed objects are holographically re-
corded, all simultaneously using a single reference beam. INPUTI P4 HOLOGRAPHIC

In other words, a single "macro object" is recorded in ASSOCIATIVE

the hologram which consists of many subregions, each OUTPUT MEMORY
containing a single object. The macro object and the ho- .-
logram are located in the front and back focal planes of a 

lens, which results in the formation of a Fourier transform PINHOLE

hologram. During readout an aperture equal in size and Fig. II Schematic diagram of the pinhole array-mirror holographic as-

shape to the subregions in the macro object is centered in sociative memory system. (After 1411.)
the input plane and input objects are placed inside it, as
shown in Fig. 11. (See discussion of FOV ambiguity in relations, suppressing the sidelobe noise and improving
the previous section.) This approach is equivalent to se- the reconstruction quality. Such an approach to correla-
quentially recording objects centered in the same aperture tion plane nonlinearities has the advantage of simplicity,

but with angularly-shifted plane wave reference beams. but it also destroys the natural shift invariance of the Fou-
Both approaches divide the correlation plane into subre- rier transform hologram. Shifts of the input object within
gions. During readout, the presence of a correlation peak the input aperture shift9 the correlation peak as well. Since
in a particular subregion is a unique label for which the the pinholes are spatially fixed, no object shifts can be
stored object is being recognized. The location of the cor- tolerated. (Pack and Psaltis have discussed approaches for
relation within the subregion has a one-to-one correspon- restoring shift invariance by eliminating the pinhole array
dence to the location of the object in the input aperture. and using quadratic nonlinearities in the correlation plane

£ Thresholding was implemented using a pinhole array in [e.g., n = 2 in (15)], but have not discussed specific in-
contact with a mirror placed in the back focal plane of a plementations.) Their expenmental results using the pin-
correlation lens. The correlation lens, in turn, was posi- hole system are shown in Fig. 12. Four objects were
tioned so that its front focal plane coincided with the Fou- stored in the hologram. The reconstructed outputs and
tier transform hologram. The correlation lens and mirror their associated partial inputs are shown. The poor recon-
acted as a "cat's eye" pseudo-conjugator which retrore- struction quality may have been due to the relatively large
flected the reconstructed reference beams back to the ho- size of the pinholes (350 microns). Because of the pas-
logram for readout of the hologram. The appropriate sive nature of the pinhole-mirror pseudoconjugator and
stored object was reconstructed centered on the input ap- the resultant lack of gain, a resonator architecture was not
erture. Thepinhole array passed only the peaks of the cor- implemented.
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(a) 3V11
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P4  SECOND
HOLOGRAM PINHOLE

ARRAY L

Fig. 13. Pinhole array optical associative loop. (After [411.)

Fig. 12. Pinhole array-mirror associative memory: partial inputs (left) and
outputs (right). (After [4 11.)

In order to improve the reconstruction quality, 'in their
second system Paek and Psaltis separated the functions of
identification and reconstruction and used a separate hol-
ogram for each function. This second NHAM is shown in
Fig. 13. A thresholding spatial light modulator (micro-
channel spatial light modulator or MSLM) was also added
in the input path. Thresholding the input image [the F( )
function in (9)] can sharpen the correlation peak and im-
prove the reconstruction quality. The first Fourier trans- (a)
form lens, hologram, correlation lens, and pinhole array
combination is identical to the thresholded Vander Lugt
co.relator portion of their first system. However, now in-
stead of retroreflecting the correlation peak back toward
the first hologram, it is passed on to a second correlation
lens which converts it to a plane wave reference beam
which reads out a second hologram. The second hologram
is recorded in the same setup as the first using the same
objects and reference beam. The second hologram there-
fore reconstructs the associated object when addressed by
the thresholded reference beam. During recording each 3
hologram is optimized for its particular function. The rel- (b) (c)
ative intensities of the reference and object beams were
adjusted during recording of the first hologram to empha-
size high spatial frequencies in the object. This tended to
orthogonalize the objects and increase the autocorrelation
peak relative to its sidelobes and cross-correlations. The
second hologram, on the other hand, was recorded with
diffuse illumination to improve the display quality when
it is addressed by a restored plane wave reference beam.
The combination of object thresholding, orthogonaliza-
tion, and display optimization (which was made possible 1mI
by the separation of recognition and reconstruction func- (d) (e)

tions between the twn holograms) greatly improved the Fig. 14. Pinhole array optical associative loop: (a) four stored memories.
reconstruction quality, as shown in Fig. 14. reconstructed images from (b) the first hologram and (c) the second ho-

4) Optical Fibers and Mirrors: An alternative, but logram. and (d) partial input and (e) recalled output (After 1411.)

closely-related approach to thresholding the correlation
plane is the use of optical fibers coupled to mirrors to by Yariv, Kwong, and Kyuma [42]. In their experiment,
retroreflect the central peak of the correlation function shown in Fig. 15, two objects were recorded in a volume
back to the hologram. This approach was demonstrated holographic material using angularly-multiplexed refer-
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S BS1  completely suppress the weaker ones, and if this Ji is al-
..--. \ =LASER lowed to illuminate the hologram, the reconstructed out-

I put will be given by
BS2 4

P2 P(INPUT) E . n r cJI 'A, 2 (r) (20)

-.---- oOUTPUT which is proportional to the conjugate of the stored object
02 Ai(r). Therefore, with the proper nonlinearities in the
01 correlation domain, a volume hologram NHAM will dis-
E2 . play the one stored object that has the largest spatial over-

L2  lap integral with the input object.
,/ In the system shown in Fig. 15, Yariv, Kwong, and
2 Kyuma used optical fibers to s.,mple the peak in the cor-

relation plane and generate the Ji. The opposite ends of
the fibers were butted against mirrors which retroreflected

S M the light back to the hologram. Since the fiber ends were

Fig. 15. Experimental arrangement of associative memvr) using feedback located in the back focal planes of correlation lenses, re-
from optical fibers. (After 421.) constructed plane wave reference beams illuminated the

hologram. (This spatial filtering technique is conceptually
ence beams. Taking into account the volume nature of the identical to the pinhole-mirror technique used by Paek
holographic medium and assuming that the induced index and Psaltis.) Experimental results for storing two overlap-
variations are linearly proportional to the optical expo- ping, nonorthogonal objects using this system are illus-

, sure, the volume index variation can be written as trated in Fig. 16. In a modification of the system, the mir-
IV rors were replaced with a conjugating-thresholding

An cac (E*Ei,, + c.c.) (16) element. This element consisted of a bistable oscillation
,I [43] using a ring resonator passive phase conjugate mirror

where E, are the recorded objects E,, are the angularly [441. The bistable oscillator utilizes mode competition to
multiplexed reference beams, and N is the total number selectively enhance the strongest mode at the expense of
of recorded objects. When the hologram is addressed by weaker ones and retroreflect it back to the hologram. The
a partial input object E', the diffracted field is given by bistable oscillator was added to the NHAM, as shown in

Fig. 17, to further enhance the discrimination between

Ed~ffr(r) oc A'(r') AJ(r') A1(r')e
-i(k/rr)(x'4'y:') reconstructed reference beams. Experimental results using

JJv this thresholding system are also shown in Fig. 16.
dx' dy' dz' (17) 5) Pinhole Array and PCM: White, Aldrige, and

Lindsay [45] have constructed an NHAM which utilizes
where the integral is petformed over the volume of the a pinhole array and PCM combination for thresholding
hologram and r = I r 1, and r is a point in the observation the correlation plane. Their system is illustrated in Fig.
plane. The A's are the slowly varying amplitudes of the 18. The correlation plane is sampled using a fixed pinhole
input object, stored objects, and reference beams. The array in a manner similar to that of Paek and Psaltis, but
above quantity represents a sum of distorted versions of the restored reference beam is retroreflected back along
the original plane wave reference beams. It is analogous its path to the hologram using a PCM rather than an or-

to (3), which was derived for a thin hologram. When these dinary mirror. The PCM consists of DFWM in BaTiO 3
beams are spatially filtered and retroreflected in the cor- which results in the system having net optical gain. The
relation plane the result is a sum of plane-like waves prop- storage medium consisted of Fourier transform holograms
agating back along the direction of E"' with complex field in dichromated gelatin. In their experiments, two objects
amplitudes proportional to the overlap integral were sequentially recording using angularly-multiplexed

plane wave reference beams. During recording the refer-

J,(r) = A'(r') A*(r') A(r') dx' dy' dz'. (18) ence-object beam ratio was adjusted to enhance the high3 spatial frequencies of the object, resulting in edge en-

The above overlap integral is analogous to the inner-prod- hancement. This edge enhancement sharpened the auto-

uct formed in the thin hologram case when the correlation correlation peaks and improved object discrimination.

function is sampled at its central peak. It is a measure of Their experimental results are shown in Fig. 19. Each

the similarity of the input object to the stored objects. The object consisted of four geometric shapes. The only com-

set of retroreflected plane wave references , given by mon element between the two objects was a circle in the
f cc Vlower left quadrant. As shown in Fig. 19(a) and (b), if a
cn EjJ,. (19) unique subset of an object addressed the NHAM, a com-

plete, albeit edge-enhanced, version of that object was re-
If a nonlinearity is used to enhance the strongest J, and constructed. When the circle addressed the hologram [Fig.
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Fig, 17 Associative memory using bistable oscillator based on passive ring
phase conjugate mirror. (After 1421.)

(b) (g)
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/ ,PUMPING

'HOLOGRAM BEAM
(C ) (h ) L 2 L 4aT iO3
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; 7: C ARRAY N

-Fig 18. Associative memory using pinhole array and phase conjugate mir-
ror based on four-wave mixing in BaTiOi. (After 1451.)

Cd) (i)

sities (no pump depletion regime). No object was recon-
. structed when the input consisted of a geometric shape not

present in either of the memories [Fig. 19(d)].
6) Nonlinear Etalons: A novel method of thresholding

the correlation plane in an NHAM was demonstrated by
Wang et al. [461. The NHAM system was similar to the

e) j) single-pass systems described above with a dichromated

Fig. 16. Associative memory using feedback from optical fibers: (a) stored gelatin holographic storage element except that the
image E,. (b) image E, diffrac.ted off the hologram by a plane wave input thresholding element was a ZnS bistable etalon. As shown
at plane P. (c) parial input image E:. (d) retrieval of the stored image in Fig. 21, holding beams were used to bias the etalon
E, by the partial image E, using the system of Fig. 15: (e) retrieval of just below the threshold point where it would switch from
the stored image E by the partial image E; using the system of Fig. 17: ju st the trsdpin wheet w s fom
(f) stored image E.. g) image E: diffracted off the hologram by a plane nontransmitting to transmitting. The etalon was posi-
wave input at plare P. (h) partial input image E;. ti) retrieval of the tioned in the back focal plane of the correlation lens. If
stored image E. by the partial image E, using the system of Fig 15: Cj) the peak of the autocorrelation function was sufficient to
retneval of the stored image E2 by the partial image E, usn' 'ie system the ea o the oldin bemct tat point o

of Fig. 17. (After 1421.) switch the etalon, the holding beam at that point would
be transmitted. Since the holding beams were aligned to
be counterpropagating with the reference beams. the

19(c)], the correlations with the t% o memories were equal transmitted holding beam read out the hologram and re-
and a superposition of the two stored objects was recon- constructed the associated image. The need for a PCM
structer' rn order to test the discrimination of the NHAM was therefore avoided. Both auto- and heteroassociation
the symi,.. try was broken by including additional subob- could be implemented by directing the holding beams to
jects to favor one of the memories (Fig. 20). This did tend the same or different holograms. Associations of two
to enhance the memory with the larger correlation, but the stored fingerprint images have been demonstrated. Wang
discrimination was not complete as a faint image of the et al. have discussed various practical limitations of this
other memory can still be seen. The authors attributed this approach, including the high power requirements and
to a lack of nonlinearity in the PCM, since the reflectivity nonuniformity of the ZnS etalon. Moreover, a PCM or
of DFWM is essentially linear for low probe beam inten- pseudoconjugator would have to be added on the object
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3 (a) (a)

I

(b) (b)

Fig. 20. Associative recall (right) for pairs of test inputs (left) using as.
sociative memory system of Fig. 18: (a) circle and Maltese cross. (b)
circle and diagonal cross. (After 1451).

I ! "
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(c) 5Xf' 10"
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RECALLED 08. .
OBJECT /CG2
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Fig. 19. Associative recall (right) for single test inputs (left) using asso-

(c) circle: (d) hexagon (not in training set). (After 145J.) 4O /04,

Fig. 21. Associative memory apparatus using nonlinear ZnS etalons. (After

side of the hologram in order to form a multipass reso- 146].)

nator.
C. Ring Resonator NHAM Configurations tive analysis of the evolution of the fields inside the ring

resonator NHAM. In their analysis the equation of motion
An alternative type of optical associative memory is the for eigenmode n is

ring resonator NHAM described and demonstrated by An-
derson [47]. In the ring resonator NHAM. the referenceI - - (21)

beam for recording the hologram is derived from the ob-
ject beam in a ring configuration, as shown in Fig. 22. where 0, is a linear gain coefficient, 0,, is a self-saturation
After the hologram is recorded, each stored pattern de- coefficient describing how much the presence of a mode
fines an eigenmode of the resonator in the same manner suppresses itself, and 0,,,, is a cross-saturation coefficient

as for the linear resonator NHAM's described previously, indicating to what degree one mode suppresses another.
An association is made by injecting a poron of the ong- The cross-saturation term is proportional to the mode in-

inal pattern. A gain medium inside the resonator amplifies tensiy overlap integral:
the eigenmode with the largest overlap with the injected 2"

field. The other eigenmodes are suppressed by a gain 0n,. =C3 I U(r)1l U,(r)l'.d'r (22)I1' competition mechanism. gainvolume
Anderson and Saxena [48] have performed a perturba- where U.(r) is the amplitude distribution of mode n. For
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RECORDING T
MEDIUM

OBJECT WAVE d

(a)0

(a) (b)
Fig. 23. Image storage and recall in the ring resonator of Fig. 22: (a) out-

put of resonator during writing; (b) output of resonator during recall
PUMP without an injected signal. (After (491.)

/GAIN

IV. DiscUSSION

HOLOGRAM,4  Nonlinear holographic associative memories represent
a novel innovation on older linear holographic memories.

INJECTED SIGNAL Nonlinearities and feedback improve the reconstruction

quality compared to ghost image holography, but beyond 
that they make possible new optical computation tools,
such as image vector quantization and programmable het-
eroassociations. These operations can be implemented on

(b) large scale-bandwidth-product images with the parallel-
Fig 22 Holographic nng resonator memory (a) recording of hologram, ism characteristic of optics. Potential applications include

(b) recall by injected signal Gain is supplied by a pumped photorefrac- multiple target identification and optical computing using
tire medium. (After 1471.) symbolic substitution [50]. Modified versions of these ar-

chitectures may have applications in optical neural net-
the case of two stored eigenmodes, the gain competition work computers [51]. The parallelism and large intercon-
between modes is described by the ratio of cross- to self- nectivity make NHAM's especially attractive for this
saturation: application.

It is interesting that most of the experimental systems

C- 012021 (23) reviewed did not utilize the nonlinearity of photorefrac-
011022 tive PCM's to improve storage capacity and perform er-

ror-correcting associations. In most cases the PCM's were
If C << 1, then overlap between different modes is low, used as linear phase conjugating elements only and exter-
competition is weak, and one mode does not influence the nal supplemental nonlinearities were added. The external
other. If C >> 1, then competition is strong and one mode nonlinearities included pinhole arrays, optical fibers, bi-
will dominate over the other. Anderson and Saxena's the- stable ring resonators, nonlinear etalons, and electronic
oretical results indicate that for a gain medium based on lookup tables. Even when a thresholding PCM based on
photorefractive two-wave mixing in barium titanate, C can a bistable ring resonator was used, it was supplemented
be at most 1. The ring resonator NHAM is adjusted until by spatial filtering using optical fibers. The use of external
C is approximately 1 for all pairs of modes. The compe- nonlinearities is due to experimental difficulties in con-
tition between modes can then be biased with an injected trolling the nonlinear reflectivity of a PCM. For example,
signal. Anderson and Erie [49] have demonstrated this a photorefractive PCM based on four-wave mixing using
concept using both simple plane waves and printed char- external pumps can have a nonlinear reflectivity when op-
acters as the recorded eigenmodes. An example of an im- erated in the pump depletion regime [52]. However, since
age stored in a ring resonator NHAM is shown in Fig. 23. pump depietion is a nonlocal effect, the threshold level of

This approach is different from the previously-de- an incident beam is affected by other incident beams. (In
*cribed NHAM architectures n that the reference beam is addition the reflcctivity of a sclf-pumpcd photorfractic

derived from the object beam for recording the hologram. PCM is a function of the angle of incidence.) This inter-
During readout no separate thresholding is performed on action between beams makes control of the optical non-
the reconstructed reference beam. Instead a nonlinear gain linearities difficult using only a photorefractive PCM,
competition mechanism is relied on to favor one recon- making external nonlinearities a practical necessity for
struction over other possible ones. This results in a sim- consistent results. Pepper has discussed an alternative
pier design and automatic generation of reference beams method for thresholding and conjugating an optical wave-
for recording, but at the cost of losing some of the flexi- front in an NHAM which uses a PCM for conjugation and
bility and storage capacity advantages of the plane wave a liquid crystal light valve for controllable external
reference based NHAM described in Section II-B. thresholding [53].
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The experimental systems discussed here demonstrate munications theory." J. Opt. Soc. Amer., vol. 52. pp. 1123-1130.
1962.the potential of NHAM's but they are also evidence of the 1191 R. J, Collier and K, S Pennington. "Ghost imaging by holograms

immature state of NHAM implementations to date. Be- formed in the near field." Appl. Phys. Lett., vol. 8. pp. 44-46. 1966.
sides finding the optimum nonlinear mechanism, issues 1201 A B Vander Lugt, "Signal detect.on by complex spatial filtering.'

IEEE Trans. Inform. Theory, vol. IT-IO. p. 2. 1964.
remaining include demonstrating better image quality, 1211 G. R Knight. "Page-oriented associative holographic memory."
larger storage capacity, and programmability. Permanent Appl. Opt.. vol. 13. pp. 904-912, 1974.
storage by fixing of holograms in photorefractive mate- 1221 D Psaltis. J. Hong. and S. Venkatesh. "Shift invanance in associa-

rials is an important issue, although much work has al- 121 ive memories." Proc. SPIE, vol. 625. pp 189-195. 1986.
[231 J Hong and D Psaltis. "Storage capacity of holographic associative

ready been done in this area [54]-[56]. Interfaces to con- memories." Opt. Lett., vol. 11. pp. 812-814, 1986.

ventional electronic host computers need to be developed 1241 J. Yu. F. Mok. and D. Psaltis. "'Capacity of optical correlators."'
Proc. SPIE. vol. 825. pp. 128-135. 1987.for these systems to become practical. In order to imple- 1251 E L Kral. J F Walkup. and M 0 Hagler. "Correlation properties

ment higher order tasks (such as rotation and scale in- of random phase diffusers for multiplex holography." Appl. Opt.. vol
variant recognition of patterns) NI-AM modules need to 21. pp. 1281-1290. 1982.

1261 Y S Abu-Mostafa and J N St Jacques. "Information capacity olbe incorporated in general purpose optical neural network the Hopfield model." IEEE Trans. Inform. Theorv. vol IT-31. pp.

architectures. Nevertheless, these first generation systems 461-464. 1985.
have demonsirated several design principles which will [271 R. J McEhece, E. C. Posner. E. R. Rodemich. and S. S. Venkatesh.
dec "The capacity of the Hopfield associative memory." IEEE Trans.
doubtless be incorporated in future optical associative Inform. Theory. vol. IT-33. pp. 461-482. 1987.
memory and neural network processors. 1281 A. D. Bruce. E. Gardner. and D. J. Wallace. "'Dynamics and statis-

tical mechanics of the Hopfield model," J. Phys. A: Math. Gen.. vol.
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APPENDIX C

Optoelectronic Neural Networks Based On
Holographically Interconnected Image Processors

Y. Owechko, B. H. Soffer, and G. J. Dunning

Hughes Research Laboratories5 Malibu, CA 90265

Abstract

We describe an optoelectronic re.onator associative memory system which uQt zes
holographic interconnects. Image processing techniques are used to implement
nonlinearities and feedback. We show using numerical models that both power ,aw and
sigmoidal nonlinearities improve tne storage capacity. Our experimental results lead _,s to
be optimistic that this hybrid optical/electronic approach can be extended to aoaot e
neural network models.

1.0 Introduction

The self-organizing, adaptive features of neural network models developed by
biologists and mathematicians has in recent years piqued the interest of engineers no a.nd
interested in appiying them to problems in signal processing, pattern recogntt,o-, and

multi-variable optimization (1). Neural network models offer a data-driven unsuoervsed
computational approach which is complementary to the algorithm-driven aoproac es o;
traditional information processing and artificial intelligence. The fine granu,a- !ty,
massive interconnectivity, and high degree of parallelism set neural networ modeis apart
from traditional electronic serial computing. These same features are the hallma'xs of

optical computing architectures which have led many workers to consider optical3 implementations of neural network models (1-12).

As reported in (2-4), we have constructed and demonstrated a resonator-based non.;near
holographic assoc;atve memory (NHAM) which can be described as an optical neural network.
A diagram of a generic NHAM is shown in Fig. 1. In this paper we describe a -ybd-3 optical/electronic version of the associative memory in which the nonlineart es areimplemented electronically. We also discuss some initial numerical results from :o-outer
simulations which show the effects of various nonlinearities on NHAM performance.

The all-optical NHAM reported in (2) consisted of a hologram situated in a onase
conjugate resonator cavity formed by two phase conjugate mirrors (PCMs). The PCMs were
formed by four wave mixing in BaTi0 3 . An intra-cavity thermoplastic hologram def,nec the
sef-consistent low-loss transverse modes of the resonator. These modes corresoono to
images stored in the hologram. Several images were recorded as superimposed Four er
transform holograms, each with a unique angularly shifted plane wave reference beam ,whcncorresponds to spatially separated delta functions in the input plane). If the hologram

was subsequently addressed by a partial or distored version of one of the stored Images, a
set of distorted reference beams was reconstructed. The oscillation threshold of tne NHAM
and the nonlinear reflectivity of the phase conjugate mirrors act to enhance the strongest
reconstructed reference relative to the weaker ones. The stored image with the largest
correlation with the input survives at the expense of the less correlated images A
method for adjusting the threshold level of a PCM was reported in (13). These noninear
mechanisms perform functions analogous to "winner-take-all" competitive neurai networws.
The output of the associative memory after presentation with a distorted input Is an
undistorted version of the input.

The storage capacity of such a nonlinear associative memory was shown n (3) to be
superior to a linear holographic associative memory when a power law nonlinearity s sed
in the correlation domain. These results are reviewed in Section 2 and extenced to
sigmoidal nonlinearities using numerical simulations. They indicate that the theoret cai
storage caoacity of an NHAM can be much greater than outer-product or simpie corleiat.on
matrix formulations of associative memory because of the superior cross-taiL suppess o

5 characteristics of the NHAM.

A hybrid ootical/electronic version of the all-optical NHAM is described in Sect or 3.
In the hybrid NHAM the BaT103 based phase conjugate mirrors are replaced witn v =eo
detectors and spatial light modulators arranged in a pseudo-conjugating confgurat o-.
Although the self-aligning feature of the all-optical phase conjugate resonator s ost
with this change, other desirable features are gained. Greater gain is possible due to tne
comb;nation of the electronic gain of the video detector and the optical gain of theI spatial IVght modulators (in this case Hughes Liquid Crystal Light Valves (LCLV)) Large

SPIE Vol 882 Neural Network Models for OptIcal ComputIng 11988, 143
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gains are desirable since the diffraction efficiency of the hologram becomes Jess as more
gratings are recorded. The hologram diffraction efficiency is an optical loss wn cn must
be overcome in order to form a resonator. Using this hybrid approach, we have demonstrated
such an associative resonator. Another feature of the hybrid resonator associative memory
is that programmable digital video processing can be used to implement nonlinearit es ana
hetero-associative operations. The nonlinearities are point operations and can oe
implemented at video rates using fast lookup tables. In this hybrid approach the strengt'ls
of optics: linear transformations, massive interconnectivity and parallelism; ano the
strengths of electronics, point nonlinearities and programmability; are both used to
advantage.

The NHAM can be interpreted as a single layer optical neural network in whic' tne
interconnection weights are established permanently and non-adaptively during recording 0-.
the hologram. Feedback is used during readout but not in the recording of the weights. A
hybrid opto-electronic two-layer neural network is described in Section 4 in whicn tre
weights can be adjusted adaptively. This system is a straightforward extension of the
hybrid NHAM which uses photorefractive crystals as the holographic storage medium

2.0 NHAM Storage Caoacity

The storage capacity of the NHAM is limited by such factors as the resolut,on, area,
and dynamic range of the holographic storage medium and the overall system gain. A more
fundamental limitation, however, which is independent of such material issues, s
correlation noise, Correlation noise is especially bothersome for an NHAM which, 'n order
to maintain shift-invariance, is based on a thin hologram. The root cause is cross-taK
between non-orthogonal stored image vectors and it is similar to the storage i mtat,on
mechanisms in the outer-product matrix type associative memories which have been desc-ioea
by many workers. Fortunately, correlation noise can be greatly reduced in the re-erence-
based NHAM by utilizing the proper nonlinearities in the correlation domain. The effects
of such nonlinearities will be described in this section using examples from numer~cal
simulations.

A block diagram of an NHAM from which we will derive an iterative equation for the
NHAM resonator is shown in Fig. 2. The operators
HA.B and HB.A represent forward and backwa-d paths through the hologram. The functions h()
and O represent point nonlinearities in ine image or object domain and in the reference
or correlation domain, respectively. Basea on this diagram, an iterative equation :a n oe
written for the object distribution A(x) after the n-th iteration around the loop basec on
the previous iteration distribution Kn 1 (x):

An G ( A n-i

where
(in) (in)

G(A h (E f (A (A )w A I

(In this paper ()and * denote correlation and convolution, respectively.) We derived the
above equation by assuming a thin hologram and angularly shifted plane wave reference
beams, which correspond in the correlation domain to references B ( ') which are spatialiy
shifted delta functions. The correlation domain nonlinearity f() operates on each term
separately because the terms are spatially separated due to the angular multiplexing of the
reference beams. The stored images A(') are the eigenfunctions of the operator G, e.3

G ( A(m) ] = A(m)

The correlation/convolution operations inherent in G serve to "recoonize" iniJ S ' 0
system as members of the stored set of images. These operations are also the source of
capacity-limiting correlation noise when non-orthogonal images are stored. The nonlinear
functions fO and ho can be used to reduce the correlation noise.

In (3) we showed that when the correlation domain nonlinearity f() is of the form

f ( x ) :x
n
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then the storage capacity in terms of the number, M, of images that can be stored with an
arbitrary "acceptable" level of cross-talk is proportional to

M Nn
- 1

where N is the size of the stored 'mace vectors This result was derived assuming -a- .
non-orthogonai binary image vectors ano it was verified using computer smuiators. 7-e
above result indicates that the cross-ta k among stored vectors can be -eat.cec .o a
arbitrarily sma l va ue by increasing the nonlinearity of the correlation doman :-- -fo.

However, n physicaly realizable systems the decree to which this can oe ac",eveo s
limited oy the finite dynamic range of analog systems. Therefore, we nave oe-:--ea
computer simulations in which the f ) ano no functions are s gmo-da. ( ncorp:-a -
saturation) and noise is added to tne updated ;mage vector after each ;te-atjon c "-
trip through the NHAM resonator (simulating ,im;ted NHAM oynam~c range)

I The dynamic behavior of the NHAM simulation is illustrated in Figs. 3a-c using o-ase
diagrams. Ir the phase diagrams the horizontal coordinate represents the "distance" of t-e
current state of the system from the target image vector. The vertical coo-a,-ate
represents the distance in the next iteration. Distance D(k) in the k-th iteration s
defined here as 1-cos(9) where cos(9) ,s the direction cosine between the state of t"eU system and the target image vector. We use the direction cosine as a distance meas,-e
rather than Hamming distance because it is a normal;zed quantity which measures the
orientation of image vectors in state space and is independent of the vector norm. It s a
better measure of image similarity. The dynamic evolution of the system for a part cu,ar
initial input 's represented by a series of points which head toward the origin when tre
system successfully converges to the target image vector. An "equilibrium I ne" wh.cn
passes through the origin with unity slope represents the projection of eauilibrium po,-'s
(possibly unstable) in state space onto the phase diagram. If the output of the NHAM
evolves to an eigenfunction of the operator G, the distance D(k) from the target vector
will be constant for succeeding iterations k, hence the system will be "stuck" on tre
equilibrium line. Recall of false or incorrect memory states is represented by system
trajectories which come to rest on the equilibrium line anywhere other tnan the or,,:

-Trajectories which monotonically approach the target vector are confined be ow t-e

equilibrium line.

In all of the following examples the image vectors are 50 bit long binary ve:tors
whose entries are +-1. The sigmoidal nonlinearity in the correlation plane in a'i cases

was

10

exp [ 0.23 ( x - 44 )

which set the correlation threshold level at 44 (the maximum possible correlation peak
value was 50). In the phase diagram shown in Fig. 3a the following nonlinearity was used
in the object domain:

1

1 + exp ( 1.5 x ]

3 In all of the following examples the parameters for ho and fo were determined empiricaily
using numerical "experiments." No opl'i " .ons were done. A total of 100 random 50 b't
long image vectors was generated and st a in the NHAM operator G. The input vecto- was

generated by reversing nine of the bits in a randomly chosen stored vector. As evidenced
by the eventual path of the system toward the origin, the target vector was successfj.,y
associated with the distorted input vector, In this case M=9N where M is t1'e -u-be- o7

- stored vectors and N is the vector size. Even with this number of stored vectors an error
in the input of 18% (nine bits in error) was successfully corrected. This capacity and
error-correction ability is far in excess of outer-product matrix-based associative
memories where M=0.15N (14,15). Note that the system spent several iterations Ciose to the

equilibrium line where progress toward convergence on the target vector is slow. The
trajectory can be pushed away from the equ;I;brium line and faster convergence obta -ea oy
sharpening the object domain nonlinearity. In Fig. 3b the only change was a r () N,tn a5 slightly sharper threshold:
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I

f (x)=

1 exp ( 1.9 x 3 1
Note the faster convergence Finally, in Fig 3c noise was added after each iteration
The magnitude of the -oise was 10% of image vector magnitude. In this case the system 3
initially started to d serge until a random perturbation pushed -:-e system into the oasin
of attraction of the target vector

3.0 Hybrid NHAM

A block diagram of the hybrid associative memory is shown in Fig. 4 and a deta,'ec
schematic in Fig. 5 As in the all-optical NHAM, thin Fourier transform holograms were

recorded in thermoplastic film Angular multiplexing of the reference beams acts to

separate correlation noise from the desired signal, improvina the efficacy of thresnoia ng

to remove the correlation noise and increase the signal to noise ratio of the reconstrictea
image. The number of interconnection weights that can be stored in a thin hologram is much
less than in a thick hologram. However, because of the shift-invariance of the Fourier
transform, the relatively small number of interconnections are used very efficiently to

implement position ;ndeoendent pattern recognition. In this case the mapping for sritt-
;nvariance is built into the system by the physi -_; of lenses and diffraction. In a tre
neural network with adaptable weights the system would have to "learn" the reau.rea
mappings from examples supplied by its environment o- at' external teacher.

Thresholding, feedback, and gain are provided electronically by two sets of vidicon
detectors, cathode ray tubes (CRTs), and LCLVs. A pirtial or distorted input image s
focused onto an object loop vidicon detector which transfers the image to an LCLV va a
CRT. The dashed 'ines in Fig. 5 indicate conjugate planes whicn are in one-to-one
correspondence with unity magnification The output from the object loop LCLV aOoresses
the hologram and reconstructs distorted versions of the angularly multiplexed plane wave
reference beams used in recording the stored images. Each of the originai deta :ujc n -
references is convolved with the correlation of its respective associated object w tn t-e
input object. The distorted references are, therefore, simply the correlation fjnctons o;

the input object with the stored objects, each of which comes to a focus or a j- . Je

subregion of the correlation plane. The locations of these subregions .n the correiat or

plane are determined by the angular shifts of the reference beams used during recordina of 3
the hologram. The correlation functions are focused onto a reference leg vidicon detector .
A one-to-one mapping is performed between points on the detector and points on the iutOut

of the LCLV A pseudo-conjugate of the incident reference beam is generated by a,gn.ng

the LCLV in the back focal plane of the correlation lens. The activated pixeis on the

LCLV which represent the thresholded correlation function are iluminateo by a readout

beam The activated spot on the LCLV is converted into a back-propagating undistorted

reference beam by the correlation lens. This restored reference beam aadresses the

hologram and reconstructs its associated stored object as a real image which focuses on the

vidicon detector ;n the object loop of the resonator. Again, a one-to-one mapping s maoe

of the light ncdent on the vidicon to the readout side of the object LCLV. The restored

object image ;s then directed to the hologram, closing the resonator loop. The combrea

gain of the vidicon/CRT/LCLV units are adjusted to overcome the optical losses of the

system. General nonlinear feedback functions can be easily implemented. The correlaton

functions are processed ;n electronic form using an image processor with a programmau e 3
digital look-up table before being sent to the reference leg LCLV.

In our initial experiment, a single object/reference pair was recorded -n tie

hologram A'though this was obviously insufficient to demonstrate disc-imination between

objects, :t does serve to demostrate that the resonator has a stable state which can De

reached only if the injected signal is sufficiently similar to the stored image. The

results are shown .n Fig. 6 The input object was a partial version of the stored object,

an Air Force reso.,,t;on chart. If more than approximately 50% of the object was -,ecteo S
ii-ito t s~ste-, -esoarace was ahieved and the system would latch onto the storec mage.

The system would stay latched after removal of the input, demonstrating bistaol ty

Interrupting the c rculating beam in the resonator would return ,t to its initiai zero

state If the input object was rotated by uo to 100, the output would still switch to .ts

other stable state The output would be an undstorted (unrotated) version of the storea

object, The system would not recognize the object if it was rotated more tran 10',

indicating that the system was not merely beng brought above threshold by noise.
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I 'l 4.0 Extension of NHAM to Adaptive Neural Networks

The opto-electronic resonator associative memory can be extended to implement an
adaptable and reconfigurable multi-layer optical neural network (ONN) with large storage
capacity and parallel weight update capability. A block diagram of the system is shown 'n
Fig, 7. A two-dimensional neural activation pattern (object OA) addresses subhologram Hi
and reconstructs another activation pattern (reference R). Reference R is noninearly
processed and then shfited so that it addresses a second subhologram H2 and reconstructs a
third pattern (object OB) The two subholograms HI and H2 are phys tally adjacent o" the
same substrate and form the link weights between the input/output ayers, OA and OB, andthe hidden layer, R The hologram substrate is a volume photorefractive crystal such as
LiNb03 in which Ink weights can be continuously reinforced or inhibited. The optical
pathways or Inks are bidirectional so that light can propagate not only in the directon
OA-R-GB but also OB-R-OA. An error signal is back-propagated through the ONN with its
phase shifted by 0 or r so that grating which contribute to a large error signal can be
enhanced or inhibited. Thus this system can implement an optical version of the back-
propagation algor:thm. The three act~vation patterns and two subholograms form a two-
layer optical neural network. GA is the input activation pattern, R is a "hidden" layer,3and OB is the output layer.

Although the number of interconnects that can be stored is proportional to the volume
of the hologram, which scales as the linear dimension cubed; the number of possible
interconnections between two NxN neural planes is N 4, which scales as the linear dimension
to the fourth power. This reflects the fact that each grating wavevector can be read out
by a multiplicity of input/output wavevector pairs, which can result in unwanted cross-ta,k
between neurons (9). This is illustrated in Fig. 8 which shows that each grating wavevector
K can be read out by a set of input/output wavevector pairs which forms two cones touching
at their apexes. In other words, all wavevector pairs lying on the surfaces of the two1. cones satisfy the Bragg condition for diffraction off the grating represented by K., which
can result in unwanted cross-talk between the K. "weights".

Several approaches can be used to resolve this readout ambiguity, including sampling
of the neuron planes using fractal grids (9). In our preferred approach, the object
wavevectors are free to vary in both 0 and 0 (two-dimensional pixel arrays), but the
reference wavevectors are confined to a plane using cylindrical lenses (one-dimensional
line pixel arrays). This results in the volume filling of K space with grating wavevectors

3and a total number of possible interconnects which scales as the linear dimension cubed.
The degrees of freedom in the volume hologram are then matched to the number of required
interconnects and cross-talk i3 automatically avoided. This arrangement also maps we to
many neural network models in which a number of neurons in one layer are connected to
smaller or larger numbers of neurons in succeeding layers. In the hybrid NHAM this type of
partitioning also results in larger gain because one-dimensional pixel lines rather than
points are used in the reference plane. The pixel lines intercept a greater fraction of
the readout beam which results in brighter retroreflected reference beams. If N, is the
number of pixelr that can be resolved along a line by an LCLV, then the number of
noninterfering interconnections between two planes is N1

3 using this partitioning method,
which is the same as the fractal partitioning method.

A detailed drawing of the proposed optical back-propagation system is shown in Fig. 9.
This system is i'rtually identical to the opto-electronic resonator associative memory
system descr'bed in the previous section except for the substitution of a LiNbG3 volume
hologram for the thin thermoplastic film hologram and the addition of a few lenses and an
SLM. The "top" and "bottom" activation patterns OA and GB are located side by side in the
input plane. An incoherent-to-coherent conversion is performed in the object loop using a3 vidicon detector and LCLV.

5.0 Summary

A hybrid opto-electronic nonlinear holographic associative memory (NHAM) was described
and theoretical and experimental results discussed. The NHAM consists of a hologram in anopto-electronic cavity. Gain, feedback, and nonlinear processing of the reference beams are

provided by vidicon detectors, an image processor, and liquid crystal light valves.
Numerical simulations demonstrated the beneficial effects of nonlinearities in the
correlat;on domain on tne storage capacity and object discrimination of NHAM. Gperaton of
the system as a resonator was experimentally demonstrated. The error-correction properties
were evident as the input image could be rotated over a range of 100 with no observabie
degradation in the associated output image.

A design for a hybrid opto-electronic resonator neural network architecture based on
volume holograms and capable of learning using error back-propagation was also discussed.
The design is a direct extension of the opto-electronic nonlinear holographic associativei memory. The use of spatially multiplexed subholograms in photorefractive crystals should
allow the implementation of a multi- layer optical neural network consisting of mliions of

SPIE Vol 882 Neural Network Models fr Optical Computing 11988) 147

.1 C-5



I
neurons with potential processing rates of 1x104 interconnects per sec. This ootica I
neural net can be constructed from standard components and would not re.ure tme U
development of new devices or the use of excessive optical power levels. The use of v ceo
electronics in the feedback and back-propagation paths simplifies interfacing to an outs ce
computer host and allows the implementation of general nonlinear activation functors In 
this hybrid system, optics provides the massive connectivity and parallelism necessary a
neural network, while electronics provides the nonlinear processing. Both are there.ore
used in the roles to which they are best suited. Such a system would find numercus
applications in adaptive information processing and control systems. I'

This work was supported in part by the Air Force Office of Scientific Research. The
authors wish to thank C. DeAnda for expert technical assistance.
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Holographic Associative Memories

Yuri Owechko

Hughes Research Laboratories
Malibu, California

Abstract
A Lyapunov or "energy" function based on Kosko's BAM model

of associative memory is derived for optical associative memories based
on thin holograms in a nontinear cavity. The dynamic behavior is illus-
trated using computer simulations.

3 1. Introduction

3 Neural network implementations of associative memory have a wide range of potential

applications including content-addressable memories with error correction, pattern recognition,
and adaptive sensory-motor mappings for robotic control, among others. A large body of theo-

retical work on associative neural networks performed over the past twenty years is now begin-
ning to be exploited for such engineering applications. It is commonly felt that conventional

serial computers are not suitable for future neural network applications involving large numbers
of neurons because of the rapid scaling of connectivity and weight update rates with problem3 size. Practical systems employing neural network algorithms will require special purpose paral-
lel computers onto which neural network models can be directly mapped.

I As an alternative to conventional computers which lack the fine-grained parallelism and

connectivity required by neural network models, much work has recently been done on optical

and hybrid optical/electronic neural networks. The very high storage capacity, connectivity, and
parallelism of optics makes such systems attractive for this application. In particular, nonlinear3 !holographic associative memories (NHAM) have enjoyed a high degree of interest and activity
in recent years. These systems improve the associative properties of ghost image holography

13 pioneered by Gabor [1], Van Heerden [2], and Collier and Pennington [31 by placing the holo-
gram in an optical feedback cavity with nonlinear gain. The images stored in the hologram then

I become the eigenmodes of the cavity and form stable limit points of the system.

In this paper I will interpret the dynamics of thin hologram NHAMs in terms of a neural

network model, specifically the Bidirectional Associative Memory (BAM) model of Kosko. I
will show that although NHAM systems are direct optical implementations of the BAM model,
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the limit points are not in general the intended stored memories unless the memory patterns in

one neural layer assume a particular form. This restriction is removed if volume holograms are i
used together with some precautions to avoid crosstalk, although the natural shift invariance of

the thin hologram NHAM is then sacrificed. I will use computer simulations to illustrate NHAM

dynamic behavior.

2. NHAM architecture U
The basic principle behind the associative properties of holograms is illustrated in Fig. 1 I

which depicts a highly idealized hologram formation process. During recording, two coherent

optical wavefronts, spatially modulated by transmittances a and b, are Fourier transformed and 3
interfere in a photosensitive medium, forming a fringe pattern IA+B12 where A and B are the
Fourier transforms of a and b, respectively. (Nonlinearities in the photoresponse of the medium 3
are ignored.) If after development the hologram is addressed with object a and the output is
Fourier transformed with a lens, then the output amplitude is given by 3

output =b*(a Oa) (1)

where 9 and * signify correlation and convolution, respectively. This result holds for a thin
hologram in which volume diffraction effects can be ignored. (Two other terms are also pro- 3
duced but they are spatially separated and can be ignored.) This result forms the basis for the

early work in ghost image holography: if a has the proper image statistics and a is sufficiently 3
similar to a, the correlation a(cc will resemble a delta function and the output will closely

resemble b, forming an association between a and b. Unfortunately, for many images the auto-

correlation is not sufficiently sharp to prevent significant degradation of the output. Moreover,

when attempts are made to store multiple objects crosstalk noise further degrades the output

quality. Another problem is that such a linear system is incapable of choosing between compet-
ing outputs so that superimposed distorted inputs result in superimposed distorted outputs. It is

also very difficult to cascade such linear systems because of the buildup of distortions and noise 3
from stage to stage.

In order to circumvent the above problems we [4] and others [5] [6] [7] [8] [9] [101] 11 1
proposed and demonstrated nonlinear holographic memories (NHAM) in which optical feedback

and nonlinear gain are used to choose between the stored memories. The physical form of the U
retroreflection/nonlinearity mechanism used by various workers varies from all-optical to hybrid
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optical/electronic mechanisms. A diagram of one type of NHAM architecture is shown in Fig. 2.
Angularly shifted plane wave reference beams are used to record a set of objects am. Each b' is
therefore a shifted delta function. When the hologram is addressed by an input a, the output

Ib*(a"®( ) (2)

is passed through a nonlinearity fO and retroreflected back to the hologram, forming an output

M

a = I a *(b" 0 )(3)

which is in turn passed through a separate nonlinearity FO and retroreflected back to the holo-
gram where the cycle repeats, forming an iterative dynamic system which converges to limit
points which are the eigenmodes of the optical cavity formed by the retroreflectors and the
hologram. It will be shown in Sec. 3 that if the b' are shifted delta functions (corresponding to
angularly shifted plane wave reference beams) the limit points of the dynamic system correspond
to the stored a-b associated image pairs.

The architecture of Fig. 2 can be described in flow diagram format as a closed loop con-
sisting of a forward linear transformation, point nonlinearity, backward linear transformation,
and another point nonlinearity (Fig. 3). If we assume the stored memories are one-dimensional
vectors, the forward and backward linear transformations Hb and Hb, can be described by matrix
representations of the linear operations listed in Eqs. (2) and (3), respectively. (The extension to
two-dimensional images is straightforward and does not add to the present discussion.) The
form of the matrix H,.b can be determined from inspection and is illustrated in Fig. 4 for angu-
larly multiplexed plane wave reference beams. It is a band M(2N-1)xN matrix where each
row in band m consists of a shifted version of a7 and m is an index for the stored associative
memory vectors. N is the size of the memory vectors, N, is the length of the "window" in which
the input vector is imbedded (this allows for translational invariance), and M is the total number
of stored vectors. The elements of the forward transformation, matrix Hb are given by

h m= a7.m (4)

I
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The backward transformation matrix Hb, is similar in form. If the input vector is padded with
zeros to increase its length to N1=M(2N-1) then both matrices are square and Hb, is equal to the

matrix transpose of H:

H (5) 1

The above formulation of NHAM dynamics is formally equivalent to the bidirectional I
associative memory (BAM) model described by Kosko. This interpretation of NHAM dynamics

is discussed further in the next section.

3. BAM interpretation of NHAM dynamics 5
Kosko's BAM model[12] is illustrated in Fig. 5. Two fields of neurons FA and FB charac-

terized by sigmoidal or hard thresholding activation functions are connected by a set of weights I
hi. Patterns activating field FA are thresholded, weighted, and transmitted to FB (bottom-up).

Those patterns are then in turn thresholded by FB and transmitted back down to FA via the same i
set of weights (top-down). This sequence then repeats in ping-pong fashion. Kosko has shown

that the function 3
E(a, P) =)-(f3H - 6 )ct- (cJHr- (6) 3

always decreases as the system evolves. In the above expression (a,3) are column vectors 3
representing the patterns in (FA,FB) and (0.T,ObT) are threshold levels. Since E is bounded from

below it is an "energy" or Lyapunov function and NHAM can be modeled as a nonlinear dissipa-

tive system. The minima of E correspond to stable limit points. The only necessary condition on u
the connection matrix is that H (top-down) is the transpose of H (bottom-up). This corresponds

to bidirectional weights, e.g. the same weight connects neurons i and j in both directions. Kosko 5
showed that the limit points correspond to stored associative memory pairs am and b if the

connection weights are given by a sum of outer products: 3
=,,, a._ bm  (7)

The BAM formalism can be applied directly to analyzing NHAM dynamics since BAM I
dynamics, as evident from Fig. 3, is identical in form to that of the NHAM framework. The I

Spatial Light Modulators and Applications INl /
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NHAM Lyapunov function is therefore given by the above expression for E if H is the matrix3 illustrated in Fig. 4 which describes the linear transformation performed by the hologram. In
general, the NHAM limit points are not (a,b') because H is given by a combination of correla-
tion/convolution operations as opposed to the simple sum of outer products of the BAM. The
convolutions superimpose multiple blurred output terms which cannot be deblurred using simple
point nonlinearities and feedback. However, for the special case of angularly multiplexed plane
wave reference beams, the b vectors are spatially shifted delta functions which separate the
various correlation terms, allowing point nonlinearities to favor the strongest correlation peak.3 This can be more easily seen if E is rewritten in the correlation/convolution format:

E(a,a)= a*(b'm®)-Oa a- (I b*(am@c)-O - (8)

I The above expression is locally minimized if (a,3) equal one of the stored associations and the
b are delta functions,

bm = 8(X - X.)

31 = b"" (9)

since the cross-correlation noise is then separated out in both the ac and 3 domains, converting
U the above expression for E into a sum of two inner products which is minimized for

(a,3)=(ae°,bm°). The iterative equation for the evolution of the a pattern can then be written as

'1 [13]:

I3 ct,=F(I am*f(am0€ ,_)I) (10)

I where it has been assumed that an aperture in the a domain eliminates extraneous holographic
reconstructions. If the nonlinearity fO in the 03 domain is faster than linear or sigmoidal the
correlation peak sidelobes will ter.d to be reduced on each iteration and a will converge to one of
the stored memories, assuming that the initial input was sufficiently similar to that stored
memoi) and the hologram is not overloaded.

3 / SPIE Critical Reviews Series Vol. 1150 D-6
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The results of a computer simulation of this process are shown in Fig. 6 in which a sigmoi- I
dal nonlinearity was used. Figure 6a. is a plot of the 3 domain for five iterations through the
NHAM. The corresponding input or a domain is shown in Fig. 6b. The random stored vectors 3
were 25 pixels long and the input pattern was one of the four stored vectors with the first three
pixels reversed in sign. Note the error correction as the system evolves. The norm of the vector
difference between a and the stored vector is plotted in Fig. 7a, illustrating the convergence of

the NHAM to one of the stored states. The monotonically decreasing Lyapunov function is

plotted in Fig. 7b. The radius of attraction of the stored states can be estimated from Fig. 8
which shows the probability of convergence as a function of the Hamming distance of the input
vector from the nearest memory vector. The four curves are parameterized by the number of

stored vectors. The effects of too many errors in the input vector on NHAM performance are
evident in Fig. 9. Here the number of pixels per vector was reduced to eight, three of which were 3
in error in the input vector. In this case the NHAM converged to the "wrong" stored memory as

is evident from Fig. 9a. The Lyapunov function, of course, still decreased. 3
4. Summary

In this paper I have discussed a Lyapunov function for thin hologram NHAMs. Such an
NHAM can be considered to be a BAM where patterns in one field (corresponding to the NHAM 3
3 domain) are coded to prevent overlapping of the correlation terms. The use of angularly
multiplexed plane wa,- reference beams implements this necessary coding. Nonlinearities can
then be used to sharpen the correlation peaks and undo the effects of the blurring convolution
operations, allowing the NHAM to converge to one of the stored states. A single-pass feed-

forward NHAM can also be made equivalent to a Hamming neural network[14] by implementing
a winner-take-all competitive network in the 3 domain using excitatory and inhibitory local
interconnections to select the strongest correlation peak. Generalized BAMs can be implem-

ented in the NHAM framework if thick holograms are used, as pointed out by Guest and TeKols-
te[15], although the natural shift-invariance of the thin hologram-NHAM is then list and special 3
techniques must be used to avoid crosstalk[16] [17]. The large storage capacity of a volume
hologram is, however, very attractive for neural network applications. 3

I
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Dynamic Evolution of Reference Reconstruction
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NHAM Convergence Parameterized by M
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Self-Pumped Optical Neural Networks

Yuri Owechko
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Optical neural network architectures are described which store each

connection weight in a continuum of spatially distributed photorefractive gratings.

I This approach reduces cross-talk and fully utilizes the spatial light modulator.
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Self-Pumped Optical Neural Networks

Yuri Owechko
Hughes Research Laboratories

Malibu, California 90265

Neural network models for artificial intelligence offer an approach
fundamentally different from conventional symbolic approaches, but the merits of
the two paradigms cannot be fairly compared until neural network models with
large numbers of "neurons" are implemented. Despite the attractiveness of neural
networks for computing applications which .nvolve adaptation and learning, most
of the published demonstrations of neural network technology have involved
relatively small numbers of "neurons". One reason for this is the poor match
between conventional electronic serial or coarse-grained multiple-processor
computers and the massive parallelism and communication requirements of neural
network models. The self-pumped optical neural network (SPONN) described here
is a fine-grained optical architecture which features massive parallelism and a
much greater degree of interconnectivity than bus-oriented or hypercube electronic
architectures. SPONN is potentially capable of implementing neural networks
consisting of i05 -i0 6 neurons with 10-10 1 interconnections. The mapping of
neural network models onto the architecture occurs naturally without the need for
multiplexing neurons or dealing with contention. outing, and communication
bottleneck problems. This simplifies the programming involved compared to
electronic implementations.

Previous optical holographic implementations of neural network models used
a single grating in a photorefractive crystal to store a connection weight between
two neurons (each pixel in the input/output planes corresponds to a single
neuron). This approach relies on the Bragg condition for angularly selective
diffraction from a grating to avoid cross-talk between neurons. However, because
of the angular degeneracy of the Bragg condition, the neurons must be arranged
in special patterns in the input/output planes to fully eliminate cross-talk. This
results in sub-sampling of the spatial light modulators (SLMs) and incomplete
utilization of the SLMs if the single grating per weight appr. ach is used.
Specifically, assuming the SLMs are capable of displaying NxN pixels, the single
grating per weight method can store only N3 /2 neurons and N interconnections.'
I describe here an approach in which the Bragg degeneracy is broken by
distributing each interconnection weight among a continuum of angularly and
spatially distributed gratings. This eliminates cross-talk between neurons, making
sub-sampling of the input/output planes unnecessary and allowing full utilization
of the SLM space-bandwidth product. In other words, N2 neurons can be fully
interconnected provided the interconnection medium has sufficient degrees of
freedom or space-bandwidth product to store the N4 interconnection weights. By
forcing signal beams to match the Bragg condition at many spatially distributed
gratings, the signal-to-noise ratio should also be improved.

The continuum of gratings is generated by using a self-pumped phase
conjugate mirror (SP-PCM) in conjunction with a SLM, CCD detector, frame
grabber, and host computer. Several theories have been published for self-pumped
phase conjugation in BaTiO3 crystals, including internal resonators based on four-
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wave mixing aided by Fresnel reflections and stimulated photorefractive
backscattering. A common feature of these theories is that each pixel in theinput plane writes gratings with and pumps all other pixels to form the phase
conjugate wavefront. This results in a physical system which is massively
interconnected and parallel, and which is a natural medium for implementation of
neural network models. The distributed gratings in the crystal serve as the
interconnection mechanism while the frame grabber in conjunction with the host
computer implements programmable neuron activation functions. By spatially
segregating the input/output plane, multiple layer neural network models can be
implemented. This hybrid system combines the parallelism and interconnectivity* of optics with the programmability of electronics.

A diagram of an experimental system used to demonstrate these concepts is
shown in Fig. 1. The "object plane" corresponds to the plane of neurons
represented by pixels on an LCLV (liquid crystal light valve). Activation patternsdisplayed on the LCLV are impressed on a light beam which is focused into the
SP-PCM. Connections between the pixels are formed and the phase conjugateU return is detected by a video camera. The return is processed on a point by
point basis by the frame grabber/image processor before being displayed again on
the LCLV. In neural network models such as backpropagation an error signal
would be formed electronically and displayed on the LCLV to adjust the weightsbetween neurons. The error signals are formed on a point-by-point basis (localoperations) and so are not computational intensive.

* An experimental demonstration of optical connectivity using the apparatus of
Fig. 1 is shown in Fig. 2. Fig. 2a shows the phase conjugate return for an
input consisting of a complete resolution pattern. The input was then switchedI to the region enclosed by the dashed ellipse in Fig. 2b. The return consisted of
the complete resolution pattern, as shown in Fig. 2b, verifying that connection
weights were formed globally among all the pixels. Cross-talk suppression is

* illustrated in Fig. 3. The input to the SP-PCM consisted of an array of dots on
a rectangular grid (Fig. 3a). The conjugate return is shown in Fig. 3b. When
the input was shifted even a slight amount, the return disappeared (Fig. 3c)

* which verified that pixels do not have to be arranged in special patterns on the
SLM to avoid cross-talk. Finally, in Fig. 4 selective erasure of weights is
demonstrated. The central neuron was deactivated in Fig. 4b by shifting the
phase of that neuron on the LCLV. This shifts the phase of the gratings written
by that neuron and selectively erases connections between it and the cther
neurons, demonstrating that learning using bipolar error signals is possible.

*This work was supported in part by the Air Force Office of Scientific
Research.

1. D. Psaltis, J. Yu, X. G. Gu, and H. Lee, "Optical Neural Nets Implemented
with Volume Holograms," OSA Topical Meeting on Optical Computing, Incline
Village, Nevada, 1987, Paper TuA3-1.
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APPENDIX F
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Kobe, Japan

Photorefractive Optical Neural Networks

Yuri Owechko
Hughes Research Laboratories

Malibu, California, USA 90265

Neural network models for pattern recognition, clustering, and optimization
offer an alternative approach compared to conventional statistical methods, but
without a unifying theory the performance of the two paradigms cannot be fairly
compared until neural network models with large numbers of "neurons" are
implemented in dedicated hardware. Despite the attractiveness of neural networks
for computing applications which involve adaptation and learning, most of the
published demonstrations of neural network technology have involved relatively
small numbers of "neurons". One reason for this is the poor match between
conventional electronic serial or coarse-grained multiple-processor computers and
the massive parallelism and fine-grain communication requirements of neural
network models. Approaches currently being pursued for dedicated hardware
implementations include special purpose digital and analog integrated circuits as
well as hybrid optical/electronic architectures.

In my talk I will discuss holographic neural network architectures in which
the connection weights between neurons are implemented as gratings in a
photorefractive crystal. In particular I will discuss the self-pumped optical neural
network (SPONN), which is a fine-grained optical architecture which features
massive parallelism and a much greater degree of interconnectivity than bus-
oriented or hypercube electronic architectures. Connections between neurons are
implemented as sets of angularly and spatially multiplexed volume phase gratings.
SPONN" is potentially capable of implementing neural networks consisting of
10%-106 neurons with 10 9 -10"10 interconnections. The mapping of neural network
models onto the architecture occurs naturally without the need for multiplexing
neurons or dealing with the contention, routing, and communication bottleneck
problems of electronic parallel computers. This simplifies the programming of the
optical system.

An alternative approach to optical holographic implementations of neural
network models utilizes a single.grating in a photorefractive crystal to store each
connection weight between two neurons (each pixel in the input/output planes

corresponds to a single neuron).' This approach relies 'on the Bragg condition for
angularly selective diffraction from a single grating to avoid cross-talk between
neurons. However, because of the angular degeneracy of the Bragg condition, the
neurons must be arranged in special patcerns in the input/output planes to fully
eliminate cross-talk. This results in sub-sampling of the spatial light modulators
(SLMs) and incomplete utilization of the SLMs if the single grating per weight
approach is used. Specifically, assuming the SLMs are capable of displaying N'
pixels, the single grating per weight method can store only N31 2 neurons and N3
interconnections. In my talk I will describe the SPONN approach in which the
Bragg degeneracy is broken by distributing each interconnection weight among a
continuum of angularly and spatially distributed gratings. This eliminates cross-
talk between neurons, making sub-sampling of the input/output planes unnecessary
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and allowing full utilization of the SLM space-bandwidth product. In other I
words, N neurons can be fully interconnected provided the interconnection
medium has sufficient degrees of freedom or space-bandwidth product to store the
N4 interconnection weights. By forcing signal beams to match the Bragg I
condition at many spatially distributed gratings. the signal-to-noise ratio should
also be improved.

The continuum of gratings is generated by using a self-pumped phase
conjugate mirror (SP-PCM) in conjunction with a SLM, CCD detector, frame
grabber. and host computer. Several theories have been published for self-pumped
phase conjugation in BaTiO3 crystals, including internal resonators based on four-
wave mixing aided by Fresnel reflections and stimulated photorefractive
backscattering. A common feature of these theories is that each pixel in the
input plane writes gratings with and pumps all other pixels to form the phase U
conjugate wavefront. This results in a physical system which is massively
interconnected and parallel, and which is a natural medium for implementation of
neural network models. The distributed gratings in the crystal serve as the I
interconnection mechanism while the frame grabber in conjunction with the host
computer implements programmable neuron activation functions. By spatially
segregating the input/output plane, multiple layer neural network models can be
implemented. This hybrid system combines the parallelism and interconnectivity,
of optics with the programmability of electronics.

A diagram of an experimental system used to demonstrate these concepts is I
shown in Fig. 1. The "neuron plane" is an optical representation of the neuron
activity levels on a spatial light modulator, in our case a LCLV (liquid crystal
light valve). Activation patterns displayed on the LCLV are impressed on a light I
beam which is focused into the SP-PCM. Connections between the pixels are
formed and the phase conjugate return is detected by a video camera. Tb.!
return is processed on a point by point basis by the frame grabber/image
processor before being displayed again on the LCLV. In neural network models
such as backpropagation an error signal would be formed electronically and
displayed on the LCLV to adjust the weights between neurons. The error signals
are formed.on a point-by-point basis (local operations) and so are not I
computational intensive.

An experimental demonstration of optical connectivity using the apparatus of
Fig. 1 is shown in Fig. 2. Fig. 2a shows the phase conjugate -eturn for an
input consisting of a complete resolution pattern. The input was then switched
to the region enclosed by the dashed ellipse in Fig. 2b. The return consisted of
the complete resolution pattern, as shown in Fig. 2b, verifying- that connection
weights were formed globally among all the pixels. Cross-talk suppression is
experimentally demonstrated in Fig. 3. The input to the SP-PCM consisted of an
array of dots on a rectangular grid (Fig. 3a). The conjugate return is shown in
Fig. 3b. When the input was shifted by half of the grid period, the return
disappeared (Fig. 3c) which verified that pixeis do not have to be arranged in
special patterns on the SLM to avoid cross-talk in the SPONN approach.
Finally, in Fig. 4 selective coherent erasure of weights is demonstrated. The
central neuron was deactivated in Fig. 4b by shifting the phase of that neuron on
the LCLV. This shifts the phase of the gratings written by that neuron and
selectively erases connections between it and the other neurons, demonstrating that
learning using bipolar error signals is possible.
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Issues which need to be addressed in the SPONN approach include the
partial erasure'of old recordings by new ones and the volatility of the gratings
(gratings are partially erased by the readout process). Partial erasure can be
compensated by using an exposure schedule in which early recordings are made
with larger exposures than later ones. Grating volatility may be possibly
eliminated by "fixing" the gratings using switching of ferroelectric domains in such
a way as to transfer the charge pattern in the crystal to the domain pattern,
which is permanent at room temperature.?

This work was supported in part by the Air Force Office of Scientific
Research.
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Figure F-i1. Schematic of self-pumped optical neural network apparatus.
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Figure F-2 Demonstration of connectivity of self-pumped PCM.
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